Una visita a la energía geotérmica

En el número de diciembre de 2012 de Investigación y Ciencia (una revista que te he recomendado, que te recomiendo, que te volveré a recomendar) hay un artículo interesante sobre la energía geotérmica. Una energía a la que no suelo prestar atención por creer que no es de aplicación en el lugar donde vivo. Una energía renovable, sí, pero que consideraba menor por no suponer ni el 0,5% de la energía eólica actualmente disponible.

Y resulta que no es cierto. Nada de eso que creía.

Merece la pena mirar la energía geotérmica. Te paso algunos datos y tú lo valoras.

Dónde obtenerla

Para empezar, tiene una característica que la diferencia del resto de renovables: es constante y permanente. No es variable como el viento que mueve la eólica o como el sol que alimenta la fotovoltaica, no depende de los vaivenes del clima como la hidroeléctrica. Y ya hay sitios donde ha triunfado: Islandia y Nueva Zelanda. Es verdad que son países pequeños (no llega a 400.000 personas Islandia, no llega a 4,5 millones Nueva Zelanda). Pero con 575 y 628 Mw instalados les resuelven mucho de su suministro. Especialmente a Islandia. Rebajando aún más su independencia de los combustibles fósiles, a diferencia de nosotros.

Para comprender bien la energía geotérmica hay que entender el gradiente geotérmico. Pero hoy nos basta con saber que el interior de la Tierra está más caliente. Y tanto más caliente conforme más al interior. Ahí tenemos lo que necesitamos para lograr obtener energía: una diferencia de temperatura entre dos puntos. El problema es cómo traer ese calor del interior al exterior, y así aprovecharlo. Para empezar, se necesita que el propio planeta ayude. Es decir, estar cerca de una vía de salida natural. Dos tercios del calor interno escapan por las dorsales oceánicas y la profundidad es un obstáculo insalvable hoy. Salvo en lugares cercanos a esas dorsales o directamente sobre ellas, como Islandia. O con un potente vulcanismo activo, como Nueva Zelanda.

En regiones más estables también se puede encontrar corteza terrestre lo suficientemente caliente como para aprovechar su energía. El calor procede de la desintegración de isótopos radiactivos y está ahí porque no tiene tan fácil salir como en los otros lugares que te comentaba, regiones volcánicas y dorsales. Se ha acumulado a lo largo de millones de años y la erosión de las rocas suprayacentes va haciendo que lo que estaba más profundo termine acercándose a la superficie.

¿Qué hace una central geotérmica?

Central geotérmica
Tomada de Union of Concerned Scientist

¿Cómo funciona una central geotérmica? De un modo sencillo. Introducen agua en profundidad, dejan que se caliente, y la extraen. Y vuelta a repetir el ciclo. Una y otra vez. Eso significa un problema. Tú podrías pensar que el problema es que ese entrar y salir agua consume energía. Y sí, pero no. Ahí no está el problema. Con lo que se obtiene se mantiene en marcha el ciclo y sobra suficiente para aprovechar como electricidad y calefacción. El problema es otro. El problema es la fracturación de la roca al introducir el agua. De hecho, la perforación de la roca es la parte más costosa del proceso. Se lleva más de la mitad del coste total de la central. Y no genera un problema, no. Genera muchos. Que aún no están bien resueltos.

Los problemas de las centrales geotérmicas

Por un lado, te recuerdo, los terremotos son desplazamientos de roca sobre roca. Así, si hay fracturas, fallas, eso es más fácil. Una central geotérmica puede favorecer que en un lugar sísmicamente estable comiencen a suceder temblores de tierra. En principio no superiores a magnitud 4 en la escala de Ritcher. Es decir, en principio no muy dañinos. Pero solo en principio. Te recuerdo que el terremoto que asoló Lorca no fue de gran magnitud pero sucedió en una falla muy superficial y muy cercana al pueblo. Y pudo tener que ver con la extracción de agua de acuíferos. Es decir, pudo ser provocado por intervención humana sobre la geosfera. No está descartado que una central geotérmica provoque problemas graves. La probabilidad no es alta, pero descartado no está, no.

Tú dirás: ¿no se pueden hacer estudios de la roca en profundidad para saber cómo es, cómo se comportará al fracturarse e introducirle agua a presión? Pues sí, claro. Pero… Pero resulta que un lugar es distinto de otro. Y no tenemos buenos modelos que indiquen cómo se va a comportar un sitio realmente. Solo podemos hacer predicciones aproximadas. Es verdad que se ha mejorado mucho en esa parte técnica. Pero no lo suficiente para eliminar altos grados de incertidumbre.

¿Y alejando las centrales de los núcleos urbanos? Pues se pierde mucho de su potencial. Porque el principal uso que tienen es dar calefacción. También electricidad, pero menos. Y  si está a gran distancia mucho de lo logrado se pierde por el camino. De hecho, las centrales geotérmicas ejecutan mejor su papel en zonas con alta densidad de población. Así que es complicado alejarlas de donde vive la gente…

Pero no acaban aquí los problemas. También esta la posibilidad de que fracase la central después de hacer todo el montaje. Eso sucede por varias razones. Una es el cortocircuito hidráulico. Que es cuando el agua pasa demasiado rápido del pozo de entrada al de salida. Sin calentarse o calentándose apenas. Ya ha pasado: en Hijiori, Japón. Por otro puede suceder que el agua haga justo lo contrario. Que no pase apenas al pozo de salida. Y se acumule. Y genere presiones peligrosamente altas. Ya ha pasado: en Landau, Alemania.

En el proceso de fracturación también pueden ir mal muchas cosas. Como cuando pinchas una roca que sirve de límite entre una capa freática y un nivel de materiales que reaccionan con ese agua. Si, p.ej., pasa agua freática a un nivel rico en anhidrita, la reacción produce yeso. Que tiene más volumen que la anhidrita. Y no poco: un 60%. Eso supone producir enormes presiones sobre la roca que está en la superficie. Ya ha sucedido: en Staufen, Alemania. Y con consecuencias para los edificios de la población en zonas donde hubo levantamientos de hasta 30 cm del suelo.

Por cierto que todos estos riesgos de las centrales geotérmicas son compartidos por el “fracking”, la fracturación hidráulica para obtener gas y petróleo que no se pueden lograr de otros modos.

Minicentrales geotérmicas domésticas

Pero quizá otro enfoque sea útil. No es que no haya centrales geotérmicas, no. Es que, además de las grandes, las haya pequeñas. De hecho, un agujero en la tierra con dos tubos, uno de entrada de agua y otro de salida de agua, es una central geotérmica. Y el calor acumulado por el suelo a causa de la radiación solar puede ser suficiente para crear una diferencia de temperatura capaz de lograr que ese agujero, con una profundidad de entre 50 y 250 m, sea rentable para calefacción, al menos en lugares fríos. En Suecia ya se extrae más energía para calefacción mediante minicentrales geotérmicas domésticas que en toda Islandia con centrales mayores. Y en Alemania una quinta parte de las viviendas de nueva construcción emplea esa técnica, contándose ya 265.000 pozos.

Geotermia de superficie
Tomado de INPhobe

Es lo que se llama geotermia de superficie. Que no está relacionada con la otra geotermia, tectónica. Su origen es el sol. Y es que la roca se calienta lentamente en verano y libera lentamente ese calor durante el invierno. Eso es algo que conocían bien nuestros antepasados que vivían en cuevas: frescas durante la época de calor, cálidas durante la fría.

Conclusión

Aunque la geotérmica sea la más estable de las energías renovables, le queda aún mucho para poder usarse con bajos niveles de riesgo. Está bien buscar más energía. Especialmente está bien buscar más energía renovable. Y si es estable, mucho mejor. Pero deberíamos esforzarnos en mejorar la eficiencia de nuestro gasto. Y reducirlo tanto como nos sea posible. No es solo producir más energía. Es usarla mejor. Sin usarla mejor nuestra sed no se apagará ni con millones de centrales geotérmicas.

La energía es uno de nuestros problemas. Es, quizá, el gran problema del siglo XXI. La ecuación de este reto tiene dos componentes: obtención y ahorro. Operando en solo uno de ellos no lograremos un futuro. No uno bueno.

Pastafarismo y bosón de Higgs

Dice wikipedia:

FSM
Flying Spaghetti Monster en Wikipedia (Head CC-BY-SA 3.0)

El pastafarismo, o también religión del Monstruo de Espagueti Volador (del inglés: Flying Spaghetti Monster, FSM), neologismo derivado de pasta (espagueti) y rastafarismo, es una religión paródica, surgida como protesta social en EE.UU. para denunciar y oponerse a la difusión de la hipótesis del diseño ¿inteligente?, impulsada por sectores políticos y religiosos conservadores durante los mandatos del Presidente George W. Bush, y a las corrientes de opinión que pretendían su equiparación con teorías aceptadas por la comunidad científica como la de la evolución biológica.

Es decir, que el pastafarismo trata de evidenciar que la religión es la religión y su campo el de la creencia. Y que la ciencia es la ciencia, y su campo el del conocimiento objetivo. Y que mezclar ambas conduce a un absurdo. ¿Quién podrá decir, si el pastafarismo acumula suficientes seguidores, que una idea absurda que proponga no llegue a la escuela?

Pero…

Pero, la verdad, qué quieres que te diga… Después de ver el aspecto del bosón de Higgs, y después de saber que le llaman (erróneamente) la “partícula de dios” (god particle, a pesar de que su nombre original era goddamm particle, o partícula puñetera), después de todo eso, te decía, a lo mejor termino creyendo en la existencia real del “Flying Spaghetti Monster“, la divinidad del pastafarismo… Jejeje…

Bosón de Higgs
Visto en Boing-Boing (Maggie Koerth-Baker)

Te dejo la mejor explicación que he encontrado del bosón de Higgs, y de cómo dota a las partículas, no solo de masa, también de identidad.

Espacio y tiempo más allá y más acá del ojo y de lo cotidiano

A veces no terminamos de comprender lo muy extraña que le hubiera debido parecer nuestra ciencia, y nuestra concepción del mundo, a gentes de hace apenas cuatro o cinco siglos, o más atrás. Definitivamente, los instrumentos que nos permiten explorar lo muy pequeño y lo muy grande, arrancado con los microscopios y los telescopios, fueron la fuente de la revolución científica que trajo el establecimiento del método científico. Que no es otra cosa que un protocolo para considerar que el conocimiento adquirido a través de la experiencia es objetivo, y no subjetivo. Es decir, que da igual el observador, lo observado será siendo lo mismo.

En la raíz de esa exploración de los espacios mínimos y máximos está la lente. Que es el instrumento que hemos usado para domesticar la luz. Para hacerla converger en un punto y poder observar. O para hacerla diverger y poder amplificar la información qué hay en esa luz. O, combinándolas, aprovechar las propiedades de ambos tipos.

Hoy tenemos más maneras de explorar los mundos pequeños y los gigantescos. Hoy hemos aprendido a mirar con más detalle las distintas informaciones que proceden de allí. Fotones de todas las longitudes de ondas, partículas subatómicas, cargas eléctricas, gravedad… Hoy tenemos más información sobre esos mundos que la que nos da la mera luz.

Para los mundos de tiempos muy cortos o de tiempos muy prolongados hemos descubierto otra herramienta. El cálculo diferencial y el cálculo integral. Aquí nuestro microscopio y nuestro telescopio es, en los dos casos, la matemática.

No puedo ni imaginar lo extraño que hubiera resultado para gentes del siglo II d.C., p.ej., ver este vídeo…

No es lo mismo rebajar que cobrar (y eso afecta al medio ambiente)

Starbucks
Fuente: Blog de Marc Gunther

He leído un estupendo artículo de Marc Gunther sobre la diferencia entre “hacer una rebaja” y “cobrar una tasa“. Lo ilustra con el caso de los vasos de papel de Starbucks.

Resulta que son una barbaridad de vasos de papel los que se consumen en esa cadena de cafés: 4.000 millones de unidades al año. Starbucks quiere reducir eso y apela al buen sentido de la gente. Le propone que, para impactar menos en el medio ambiente, traiga su propia taza. Y, si lo hace, le rebajaran 10 centavos en el precio del café, que es de $1,60.

En realidad, si hubiera una clara intención de ir más allá de un adorno políticamente correcto, hay una manera más eficiente de enfocar el problema: poner el café a $1.50 y cobrar 10 centavos extras a quien no traiga taza propia.

Y es que, como bien cuenta Marc Gunther, no es lo mismo hacer lo uno o lo otro, como está claramente documentado, mediante suficiente evideencia científica. Porque en EE.UU. hay centros universitarios que se ocupan de la Teoría de Decisiones. Una mezcla de matemáticas y psicología, ya que las opciones que tomamos no son puramente racionales en ningún caso. Repito: en ninguno. En las decisiones hay una mezcla compleja y variable de racionalidad y emociones. En este caso juegan la sensación de pérdida o de ganancia. Y es que resulta que nos esforzamos mucho más en no perder que en ganar.

La conclusión de Marc Gunther es que el objetivo principal de Starbucks no es realmente reducir su consumo de papel sino generar una imagen de empresa socialmente responsable. A ver… Que sí, que seguro que logran reducir consumo de papel. Y seguro que les gusta hacerlo. Pero la conclusión, bien argumentada, es que no es su objetivo principal, sino el secundario.

Vía Boing-boing.

Actualización: 9:59

Me comenta sobre este post, en twitter, mi adorado Juanjo Muñoz (y adorarlo es una mezcla de emoción y racionalidad, jejeje…). Ahora es complicado seguir un post. Ya no es el sitio donde se habla de algo. La conversación trasciende el post concreto y va a muchos otros lugares en la web. En este caso a twitter, te decía. Pero no quiero que te pierdas lo que indica. Él es filósofo y habla del emotivismo. Y es que la mayoría de nuestro pensamiento parece ya inventado. Solo hay que ir actualizándolo en los diversos contextos… Te pongo un par de imágenes como breve extracto. Y entenderás lo mucho que él vale para mí…

Twitter con Juanjo 1
Twitter con Juanjo 2
Twitter con Juanjo 3

La ciencia y la censura

Tengo muchas dudas acerca de qué hacer con un blog como este. Por un lado me parece un espacio de reflexión personal necesario. El que no haya escrito en los últimos tiempos refleja que no estoy leyendo lo suficiente de ciencia. En ese sentido, el blog es mi conciencia. Pero por otro veo más ágiles otros modos de comunicar lo que pienso, descubro, dudo… Google plus es uno de esos modos.

Google Plus
Logo de Google Plus

En google plus la posibilidad de comentar una noticia es mucho más ágil que en el blog. Y la posibilidad de que esa noticia sea compartida por otros, lo cual convierte en mucho, mucho más social el trabajo. Me lleva mucho menos tiempo escribir allí que en el blog. Para muchas cosas es más eficiente. Para comentar la cotidianeidad o la novedad. Ese tipo de cuestiones aparecerán allí mucho más que aquí.

Pero a veces la novedad y la reflexión se encuentran. Esta es una de esas veces. Y te traigo aquí lo que escribí allí. Porque creo que merece una reflexión. ¿Qué papel juega la sociedad en la orientación de la ciencia? Y es que la ciencia es una actividad social, y como tal, sujeta a la decisión política. ¿Puede la política evitar que conocimientos científicos sean divulgados? Yo creo que sí. ¿Indiscriminadamente? Yo creo que no.

Poderes extraordinarios deben conllevar deberes extraordinarios. La ciencia nos ha llevado a impresionantes cotas de poder para modificar nuestra vida, para moldearla. Una ciencia tan poderosa debe estar sujeta a la voluntad de la gente. Una ciencia tan poderosa debe estar atada a la democracia. Pero sujeta no quiere decir impedida. Una parte esencial de la ciencia es la comunicación. Sin comunicación no hay ciencia, no hay transferencia de conocimiento para validar sus resultados, para usarlos, para tomar mejores decisiones. La ciencia, aún sujeta, debe seguir siendo libre.

En algún punto ha de estar el equilibrio… En algún punto deben coexistir la legítima aspiración de las sociedades a que sus recursos invertidos en ciencia resulten optimizados y la legítima aspiración de la ciencia a conocer y comunicar todo lo que pueda ser conocido y comunicado.

Bozal
Tomado de Letras Perras (CC-BY-NC-ND)

Aquí te dejo lo que pensé que debía escribir en G+ acerca de esta noticia que me ha repugnado, para ver si existía la posibilidad de conversar con alguien sobre el tema. Una noticia en la que creo que ese equilibrio no se ha alcanzado. Una noticia en la que la democracia representativa se manifiesta, cada vez más, como un sistema opresivo e injusto, sujeto a grupos de presión y a tomas de decisión alejadas de la voluntad de las personas, cada vez menos capaz de garantizar la voluntad de la gente. Creo que es una muy mala noticia: “Canadian government is ‘muzzling’ its scientists” (El gobierno canadiense pone “bozal” a sus científicos).

Creo que la noticia de la BBC importa. Voy a tratar de dar bandazos de un lado a otro intentando explicar mi posición…

Por un lado, estoy convencido de que la ciencia debe estar sujeta a la política mediante la financiación pública de unas determinadas líneas de investigación que se consideren prioritarias. La sociedad debe consensuar a qué dedica recursos limitados, claro que sí.

Pero por otro lado toda línea de investigación científica debe poder ocurrir. Debe haber libertadpara investigar. Incluso si puede causar daño. Porque la ciencia no es tecnología, sino conocimiento.

Pero los resultados que puedan causar daño deberían estar sujetos a algún tipo de vigilancia por parte de la sociedad, que les impida convertirse en tecnología lesiva.

Pero si no comunicas tus resultados, la ciencia no sucede. Debe haber libertad para transferir ese conocimiento a otras instancias. A tus pares para que lo revisen y validen, a otros interesados y usuarios para que lo puedan incorporar a sus tomas de decisiones.

Parece que poderes extraordinarios, como los que suministra el conocimiento acumulado por varios miles de años de ciencia, varias décadas de ciencia acelerada, requieren deberes extraordinarios. En alguna parte está la divisoria entre lo que está bien que ocurra y lo que no. Pero no es una línea neta, definida. Más bien una zona gris. En alguna parte está la ciencia que acelera nuestra búsqueda de la felicidad y proporciona utilidad a la gente. Y en alguna parte la ciencia que hoy resulta inútil, que no aporta gran cosa a la sociedad.

Pero, lo que nunca, nunca debe existir en la ciencia, es censura sin proporción. Censura incapaz de equilibrar medios y objetivos. Censura administrativa indiscriminada. Impedir a la ciencia hablar con la prensa, o con cualquiera, es impedir a la ciencia transferir conocimiento a la sociedad. Solo debe hacerse cuando esté absolutamente justificado.

Ejemplo de censura que creo útil: no deben publicarse los resultados de las mutaciones que convierten al virus de la gripe H5N1 en letal.

Ejemplo de censura que me repugna: la prensa debe pedir permiso al gobierno de Canadá para entrevistar a científicos, los cuales tienen prohibido hablar con ellos sin esa censura previa. Sea cual sea la línea de investigación del científico.

Esta noticia no viene en los libros de texto, pero sí en el currículum…

¿La debatimos si te es útil? En G+ mejor, creo…

El generador de electricidad biológico

Generador eléctrico
Fuente: Bo Krantz Simonsen (dominio público)

Seguro que sabes acerca de los generadores eléctricos. Sí, esos aparatos que usan el magnetismo para producir electricidad. Como las turbinas de las centrales hidroeléctricas. O mareomotrices, o eólicas, o… Hay muchos tipos de generadores por la fuente de energía que emplean, pero la mayoría comparten un mismo diseño básico: algo hace dar vueltas a un imán cerca de una bobina hecha de material conductor. Es decir, un generador convierte energía cinética de alguna clase en energía eléctrica.

Y de eso vivimos… De dispositivos como este obtienes la electricidad que facilita tu día a día.

Pero… Pero nos faltan generadores más diversos. Bueno, sí los tenemos, pero no son tremendamente eficaces. Muchos de ellos son secundarios. Es decir, toman energía eléctrica ya creada, la almacenan en alguna otra clase de energía (normalmente química, como las pilas o las baterías de tu móvil) y luego la entregan de nuevo como energía eléctrica. Muchos de ellos acuden a energías primarias, como la del Sol, para producir energía eléctrica (fotovoltaica). Y mejores baterías y mejores paneles solares forman parte de nuestras esperanzas de futuro.

Pero estamos desdeñando un camino importante. La transformación directa de energía química en electricidad. Y es importante porque la química es la energía de la que se vale la vida. Es la que está almacenada en los enlaces entre átomos para formar moléculas. Es la misma energía que ata unos átomos a otros en una losa y resiste tu peso cuando pisas. O la misma que hay en el pan de un bocadillo.

Ahora hay un equipo científico está probando un enfoque diferente. Un enfoque que imita, al menos en parte, el metabolismo. Un enfoque en el que el ánodo de un circuito resulta alimentado por unos enzimas que le pasan electrones. ¿Y de dónde sacan los enzimas esos electrones? Ellos se los arrancan a glúcidos (primero hay enzimas que rompen los polisacáridos en monosacáridos; luego hay enzimas que oxidan -roban electrones- a los monosacáridos). Eso se parece, al menos en concepto, a la glucólisis. A una serie de reacciones químicas que ejecutamos nosotros para obtener energía de la glucosa. Es, por tanto, una imitación a una parte de nuestro metabolismo.

Generador eléctrico metabólico
Fuente: JACS

Esos electrones, robados a los glúcidos por los enzimas y pasados al ánodo, ponen en marcha un circuito eléctrico que alimenta algún tipo de dispositivo. Del cuerpo o añadido. Podría ser una minicámara, podría ser una neurona, podría ser un músculo, podría ser una grabadora…

Y los electrones llegan al cátodo, otro enzima se tiene que deshacer de ellos para mantener la corriente. Y para quitárselos de encima se los pasa al oxígeno. Lo cual deja un residuo, un desecho nada peligroso. La basura del proceso es agua (o lo que es lo mismo, oxígeno reducido). Que es exactamente lo que pasa en otra parte de nuestro metabolismo: la cadena de transporte electrónico.

Según Daniel Scherson

«The key to converting the chemical energy is using enzymes in series at the anode. The first enzyme breaks the sugar, trehalose, which a cockroach constantly produces from its food, into two simpler sugars, called monosaccharides. The second enzyme oxidizes the monosaccharides, releasing electrons. The current flows as electrons are drawn to the cathode, where oxygen from air takes up the electrons and is reduced to water».

Desde luego, el circuito se inspira en el metabolismo, sí. Aunque aún le falta mucho para llegar al nivel alcanzado por la evolución. Solo rinde unas pocas decenas de microwatios por centímetro cuadrado (µw/cm2) a una diferencia de pontencial de 0,2 voltios. Exiguo para las necesidades que se le auguran a este tipo de dispositivos. Pero lo importante es que la idea está en marcha.

Y lo importante es que tú puedas imaginar qué hacer con esto. Los autores lo que han hecho es implantarle el generador a una cucaracha y ver que sí funciona. Y con él podrían lograr, más adelante, que opere una microcámara sobre ella, recorriendo lugares a los que no podemos acceder nosotros. Quizá con otro generador conectado a sus neuronas que la haga moverse como queramos; a derecha o a izquierda, o pararse, o avanzar. Y todo, todo, alimentado por los nutrientes que hay en la sangre de la propia cucaracha. Por glúcidos. Es muy probable que tras una misión de exploración la pobre acabe con mucho apetito, pues parte de sus nutrientes no irían a sus células, sino a los generadores.

¡Ah! Y de paso, una buena razón para conservar ecosistemas. Sí, sí… Porque los organismos vivos tienen múltiples enzimas. Las cuales podrían ser, algún día, parte de un circuito eléctrico. No parece tener mucho sentido, ante este empuje de la biotecnología, sustituir ecosistemas por ladrillos… Creo…

Me enteré de esto leyendo Fayerwayer y siguiendo la pista de los links…

ResearchBlogging.orgRasmussen, M., Ritzmann, R., Lee, I., Pollack, A., & Scherson, D. (2012). An Implantable Biofuel Cell for a Live Insect Journal of the American Chemical Society, 134 (3), 1458-1460 DOI: 10.1021/ja210794c

Neutrinos que tendrán que encajar en la ciencia, o cambiarla

CERN
Fuente: Cyberspaceorbit

Hoy hemos comentado en clase sobre la naturaleza de la ciencia. Hemos descubierto que la ciencia es una actividad que busca conocimiento objetivo. Y en eso se diferencia de la creencia. Por tanto, para explicar un fenómeno, un hecho, un sistema material… solo puede haber *una* teoría. En cambio, puede haber muchas religiones, todas verdaderas para cada persona.

También hemos comprobado que la ciencia no aporta verdades. Sí puede, en cambio, revelar que algo es mentira. Porque cualquier experimento podría dar al traste con lo que hoy consideramos verdad… Es decir, que la ciencia está hecha de teorías que consideramos verdad provisionalmente. Que son útiles para tomar decisiones, pero que podrían cambiar.

En eso también se diferencian de las religiones, de las creencias. Que afirman que todo lo que indican es cierto para los que decidan creer en ellos. No hablan de conocimiento provisional ni objetivo, como la ciencia.

Y hemos usado el ejemplo de los neutrinos que parecen ir más rápido que la luz. Porque han salido en los periódicos, se han hecho famosos. Y porque no encajan en el conocimiento que hay hoy en día… ¿Qué ocurre cuando algo no encaja? Que hay que investigar más, mucho más. Con la mente puesta en que todo podría cambiar. Pero sabiendo que, hasta que no sepamos a ciencia cierta qué ocurre, seguiremos con la verdad provisional aceptada que llamamos teoría. Seguirá guiando nuestras tomas de decisión. Mientras tanto… Y sabiendo que algún día tendremos que cambiarlas, cuando cambiemos de teoría.

Por cierto… Es importante que sepamos que estos conocimientos no vienen en los libros de texto. Es importante que no creamos que los libros de texto son importantes. Son un pequeño complemento. Pequeño y muy caro. Si los colocamos en un lugar central en la educación nos perderemos la posibilidad de aprender de lo que pasa un día concreto, a lo largo del curso… Eso no lo trae un libro de texto, no…

Lo que nos perdemos si solo miramos

Marcgravia evenia
Fuente: Science

Creemos que lo más importante es lo que se ve. Y eso es solo porque somos primates. Si fuéramos murciélagos (he estado a punto de decir quirópteros, su nombre científico) lo más importante sería lo que oyéramos. Pero, ¿y si fuéramos un murciélago vegetariano, que se alimenta de néctar y que vuela en la oscuridad? El olor podría servir, pero el viento lo dispersaría de modos poco predecibles y eso significaría un precioso tiempo perdido y, con él, energía malgastada.

La solución procede de la planta, Marcgravia evenia. Mejor dicho, de sus hojas con forma de platillo. Y es que resulta que ella, como otros cientos de especies tropicales, quieren ser visitadas por alguna de las cuatro decenas de especies de murciélagos que se alimentan de néctar. Porque dependen de ellos para la polinización.

Y la solución que ofrece la planta a un murciélago es a la vez extraña y obvia. Sus hojas hacen que el sonido emitido por ellos les devuelva un eco característico aunque reciba la señal desde ángulos muy diversos.

Es un excelente caso que ejemplifica la coevolución. Que es más una norma que una excepción. De hecho, se pueden estudiar relaciones ecológicas del pasado mirando características de una especie que, en el presente, son inexplicales. Es el caso del berrendo, un antílope norteamericano cuya extraordinaria velocidad hace que carezca completamente de depredadores. En el pasado, era la presa del extinto guepardo norteamericano. Sin esa paleorelación, no se podría entender por qué es como es, más veloz de lo que realmente necesita.

Así, que nos quedamos con dos ideas. Una, que hay muchas más cosas de las que vemos. Otra, que los ecosistemas son seres vivos, sí, pero también sus relaciones. Un zoológico conserva diversidad biológica, pero no relaciones, no diversidad ecológica. Y es que la diversidad no es solo genes, no es solo especies. Es también, y sobre todo, relaciones. Si realmente queremos conservar, tienen que ser espacios naturales, no artificiales.

La luciérnaga fundida

A través del mail y a través de un comentario en el blog me han llegado vídeos de los cortos para este concurso de “La luciérnaga fundida“. Son cortos elaborados por Evelyn Navarro, de un IES de Murcia (no me dijo cuál) y por alumnado de Estefanía Miquel, del IES Felipe II, de Mazarrón.

Lo primero, pedirles disculpas a ambas por el retraso. He tenido un poco abandonado el blog. ¡Lo siento mucho!

Lo segundo, incluir aquí los vídeos para que los disfrutéis. A mí me han gustado. :)

Creo que es bueno que iniciativas como estas tengan la máxima difusión posible. Lo que siento es haber tardado tanto en hacerme eco de ellas. :)

Felicidades por vuestro trabajo! :)

Complicado, complejo, diverso, adaptativo

ResearchBlogging.org
No es raro confundir ambos términos, complicado y complejo. Pero son claramente distinguibles. Complicado suele hacer referencia a un alto número de elementos materiales, de objetos. Incluso a una amplia variedad de los mismos. Complejo, en cambio, indica un elevado número de interacciones.

Lo complicado se puede reducir clasificándolo. Incluso podemos retirar una parte de los objetos sin que el sistema pierda calidad de funcionamiento. Lo complejo no. Al menos, no sin consecuencias. Todo el sistema puede cambiar perdiendo una conexión, creando una nueva, fortaleciendo o debilitando las que ya existían. Lo que ocurre es que se requiere tiempo para apreciar los cambios en complejidad, mientras que los cambios en complicación son inmediatamente perceptibles.

Red compleja
Fuente: TIEE

Nuestra ciencia es, en gran parte, un estudio de lo complicado hecho sencillo. No tanto de lo complejo. Porque lo complejo es la parte invisible de los sistemas. Es más fácil percibir a un elefante y a la hierba que la influencia de ese elefante sobre la hierba. Así, tendemos a valorar las cosas por lo complicadas que son, no por su complejidad. A pesar de que en esta última propiedad suela residir una mayor parte del valor y del conocimiento. Y también porque la red de interacciones de un sistema suele sobrevivir a sus miembros. Un elemento puede perderse pero eso no supone un problema siempre que otros puedan suplir la función que ejecutaba. El colapso por pérdida de complicación solo se presenta cuando el ritmo de pérdidas es más alto que el de sustituciones o cuando los desajustes creados por sustituir las interacciones originales por otras similares, aunque no iguales, se acumulan. El colapso por pérdida de complejidad podría suceder desde el primer momento o retardarse en el tiempo.

Y es que el tiempo es muy importante en los sistemas complejos. Es él el que evidencia los procesos, las interacciones no visibles. Pero no un tiempo lineal, no. Más bien un tiempo no lineal en el que aunque ocurran cosas no hay consecuencias durante intervalos muy prolongados; hasta que, de pronto, sucede una brusca transición entre modos de funcionamiento; de uno, con unas interacciones, a otro, con otras.

Los sistema complejos pueden ser automáticos o adaptativos. En los automáticos, los elementos no toman decisiones acerca de qué interacciones activar o no en función del contexto. En los adaptativo sí. Eso implica que debe existir una memoria, una percepción y, si es posible, una capacidad de predicción. La memoria contendrá un mapa de las posibles respuesta y las circunstancias en las que deban ocurrir. La percepción deberá obtener información ambiental o del propio sistema para poder construir buenas decisiones. Por otro lado, la predicción ayuda a que los continuos procesos de toma de decisión sucedan más rápidamente.

Pero en los sistemas complejos adaptativos también juega un papel la diversidad. Gracias a la diversidad las respuestas bruscas que ocurrirían solo con memoria, percepción y predicción se suavizan. Si todos los elementos respondieran en el mismo momento, las fluctuaciones serían mucho más intensas que si cada elemento pone en marcha su respuesta en valores diferentes del estímulo, si cada elemento tiene una sensibilidad distinta.

Ventilación en panal
Fuente: Wausberg en Wikipedia

Eso pusieron de relieve, en su estudio sobre abejas, Julia Jones y su equipo, de la Universidad de Sidney. Buscaban la razón de que la abeja reina tuviera varios apareamientos y de que les fuera mejor a las colmenas más diversas. Y encontraron que, en ese tipo de colmenas, las obreras que no son hermanas muestran distinta sensibilidad a la temperatura. Las colmenas se calientan porque hay individuos que están aleteando constantemente y sus músculos desprenden calor. Y se refrigeran si el aleteo se produce en la entrada y si una parte del enjambre abandona el nido. Y es que la temperatura tiene una incidencia notable sobre el desarrollo de las larvas y sobre los ataques parasitarios que puedan sufrir. En las colmenas menos diversas, el “termostato” es más homogéneo y el control de la temperatura es más inestable, menos fino. En las más diversas hay una puesta en marcha o un apagado gradual y eso hace que las variaciones térmicas sean mucho menores.

Este estudio permite ver a la diversidad como una propiedad importante de los sistemas adaptativos complejos, que suaviza los cambios de funcionamiento que las tomas de decisiones impliquen y estabiliza dichos sistemas.

Jones, J. (2004). Honey Bee Nest Thermoregulation: Diversity Promotes Stability Science, 305 (5682), 402-404 DOI: 10.1126/science.1096340