Crisis climáticas en la Historia de la Tierra

Durante el Arcaico el Sol debía emitir de un 30 a un 50 % menos energía que en la actualidad. Además, la Tierra arcaica, casi totalmente desprovista de continentes, debería tener un albedo mucho menor, con lo que absorbería más calor. Si tomamos como real la aparente ausencia de glaciaciones durante el Arcaico, y tenemos en cuenta los efectos contrapuestos de un Sol menos caliente y de un albedo mayor, se hace necesario prever un efecto de invernadero que elevara la temperatura de la Tierra unos 30 ºC, algo menos que el actual.

En el Proterozoico hay evidencias de al menos dos glaciaciones, una al principio de este período, la llamada huroniana (aproximadamente de -2400 Ma a -2100 Ma) y otra, muy larga y, posiblemente, la más fuerte de todas (de unos 200 Ma de duración y con tres o cuatro fases glaciales), al final del mismo: la llamada "Tierra bola de nieve".


Al principio del Paleozoico se produjo una transgresión marina que probablemente contribuyó a mejorar el clima. Durante el Cámbrico se depositaron abundantes calizas, muchas de ellas de arrecifes coralinos, por lo que el clima debía ser más cálido que el actual.
En el resto del Paleozoico se dieron dos glaciaciones: la ordovícico-silúrica (entre –450 y –430 Ma) y otra permo-carbonífera (entre –350 y –250 Ma), pero no tan intensas como las del Proterozoico. La glaciación pierde fuerza durante el Pérmico superior, donde el clima se va calentando y volviéndose árido, lo que explica que en este período se hayan formado los depósitos salinos mayores de la Tierra.
Con sus casquetes glaciares y su “infierno” ecuatorial, el Pérmico es el período de la Tierra con los mayores extremos climáticos de la historia conocida. Esto quizá fuese la causa de las grandes extinciones producidas al final de dicho período.

Al empezar el ciclo alpino (Mesozoico y Cenozoico) el clima pudo ser de templado a tropical, sin glaciares de casquete y con mares más calientes que los actuales. Hace unos 40 Ma el clima empezó a enfiarse por la aparición de corrientes oceánicas frías de fondo, desarrollándose los glaciares de casquete antártico y del hemisferio norte, lo que introduce a la Tierra en su período más frío desde hace 600 Ma.

Aquí tenéis unos pequeños apuntes sobre las distintas hipótesis para explicar el origen de las glaciaciones,  que pueden agruparse en dos categorías:

A) Hipótesis solares (origen solar o astronómico): Se pueden deber a altibajos en la producción de energía por parte del Sol o por una disminución de la radiación solar que llega hasta la Tierra: ¿posible relación con los ciclos de manchas solares?

Puesto que las manchas solares son más oscuras sería lógico suponer que más manchas solares signifiquen menos radiación solar. Sin embargo las áreas circundantes son más luminosas y el efecto global es que más manchas solares se asocian a un sol más luminoso. La variación es pequeña (del orden del 0,1%) y sólo se estableció mediante medidas por satélite de la variación solar a partir de los años ochenta.

Durante el Mínimo de Maunder (período de 1645 a 1715, cuando las manchas solares casi desaparecieron de la superficie del Sol, tal como observaron los astrónomos de la época) hubo unos inviernos anormalmente fríos e intensas nevadas tal como demuestran los registros históricos (parte de la llamada Pequeña Edad del Hielo). La Tierra pudo haber refrescado casi 1 K.

Se ha sugerido que algunas de las glaciaciones fueron el resultado de prolongados periodos de bajada de la actividad solar.

B) Hipótesis geológicas (origen terrestre): Hay de varios tipos:
  • Distribución de los continentes. Los continentes tienen mayor albedo que los océanos, de tal forma que un supercontinente o Pangea cerca de un polo será un punto de partida favorable para una glaciación.
  • Circulación oceánica global. Si los continentes bloquean las corrientes cálidas ecuatoriales y se favorece una circulación circumpolar, puede darse una glaciación en los continentes próximos a los polos, ya que éstos quedan aislados de las corrientes cálidas.
  • Orogenias. Las orogenias provocan un aumento en la superficie continental (mayor albedo) y, además, pueden interrumpir corrientes oceánicas, lo que favorecerá las glaciaciones. De hecho, se ha podido establecer la relación entre ciertas fases orogénicas (caledónica, hercínica, alpina) y algunas glaciaciones.
  • Vulcanismo explosivo. Este inyecta grandes cantidades de polvo a la atmósfera, lo que provoca un aumento del albedo y una bajada en la temperatura global.
  • Hipótesis del antiinvernadero. Una glaciación también podría ocurrir por una disminución del CO2 atmosférico. Esto pudo ocurrir en la glaciación eocámbrica cuando quizás apareció la ozonosfera y el fitoplancton pudo desarrollarse explosivamente, absorbiendo gran parte del CO2 para realizar la fotosíntesis.
Para explicar la sucesión de periodos glaciales e interglaciales la mejor teoría es la hipótesis de Milankovitch. Esta propone que las tres variaciones de detalle de la órbita terrestre (excentricidad, variación en la inclinación del eje de rotación y el cabeceo de éste) tienen periodicidades que, sumadas, daban una curva análoga a las variaciones de temperatura de los periodos glaciales e interglaciales. Faltaría una cuarta variación, la oscilación del plano de la eclíptica, que no fue considerada por Milankovitch.

Crisis climáticas y crisis biológicas en la Historia de la Tierra

Aquí tenéis unos pequeños apuntes sobre las distintas hipótesis para explicar el origen de las glaciaciones,  que pueden agruparse en dos categorías:

A) Hipótesis solares (origen solar o astronómico): Se pueden deber a altibajos en la producción de energía solar o por una disminución de la radiación solar que llega hasta la Tierra: ¿posible relación con los ciclos de manchas solares?

Puesto que las manchas solares son más oscuras es natural suponer que más manchas solares signifiquen menos radiación solar. Sin embargo las áreas circundantes son más luminosas y el efecto global es que más manchas solares se asocian a un sol más luminoso. La variación es pequeña (del orden del 0,1%) y sólo se estableció por medidas por satélite de la variación solar a partir de los años ochenta.
Durante el Mínimo de Maunder (período de 1645 a 1715, cuando las manchas solares desaparecieron de la superficie del Sol, tal como observaron los astrónomos de la época) hubo unos inviernos anormalmente fríos e intensas nevadas tal como lo demuestran los registros históricos. La Tierra pudo haber refrescado casi 1 K.
Se ha sugerido que algunas de las glaciaciones fueron el resultado de prolongados periodos de falta de actividad solar.

B) Hipótesis geológicas (origen terrestre): Hay de varios tipos:
  • Distribución de los continentes. Los continentes tienen mayor albedo que los océanos, de tal forma que un supercontinente o Pangea cerca de un polo será un punto de partida favorable para una glaciación.
  • Circulación oceánica global. Si los continentes bloquean las corrientes cálidas ecuatoriales y se favorece una circulación circumpolar, puede darse una glaciación en los continentes próximos a los polos, ya que éstos quedan aislados de las corrientes cálidas.
  • Orogenias. Las orogenias provocan un aumento en la superficie continental (mayor albedo) y, además, pueden interrumpir corrientes oceánicas, lo que favorecerá las glaciaciones. De hecho, se ha podido establecer la relación entre ciertas fases orogénicas (caledónica, hercínica, alpina) y algunas glaciaciones.
  • Vulcanismo explosivo. Este inyecta grandes cantidades de polvo a la atmósfera, lo que provoca un aumento del albedo y una bajada en la temperatura global.
  • Hipótesis del antiinvernadero. Una glaciación también podría ocurrir por una disminución del CO2 atmosférico. Esto pudo ocurrir en la glaciación eocámbrica cuando quizás apareció la ozonosfera y el fitoplancton pudo desarrollarse explosivamente, absorbiendo gran parte del CO2 para realizar la fotosíntesis.
Para explicar la sucesión de periodos glaciales e interglaciales la mejor teoría es la hipótesis de Milankovitch. Esta propone que las tres variaciones de detalle de la órbita terrestre (excentricidad, variación en la inclinación del eje de rotación y el cabeceo de éste) tienen periodicidades que, sumadas, daban una curva análoga a las variaciones de temperatura de los periodos glaciales e interglaciales.

En la medida que la paleontología fue teniendo registros más completos, y pudo determinarse con mayor precisión las fechas de aparición y extinción de diversos grupos, comenzó a hacerse evidente que en determinados momentos de la historia de la Tierra se han producido extinciones simultáneas de grupos biológicos muy diversos. Se reconoció que los fenómenos de extinción son de dos tipos: la extinción de fondo, que afecta regularmente a pocas especies, y las extinciones masivas, que esporádicamente afectan a un gran número de diversos organismos.

Los paleontólogos actualmente aceptan que estas crisis pudieron tener causas terrestres o extraplanetarias, con drásticas consecuencias sobre los ecosistemas de la Tierra en su conjunto, y que de no haberse producido esas grandes catástrofes, no habrían surgido y evolucionado nuevos grupos biológicos, por lo tanto las extinciones son fenómenos evolutivos importantes para la renovación y aparición de innovaciones en la ecosfera. Algunos especialistas han reconocido veinte o más de dichos procesos de extinción, pero algunos son más convincentes que otros.

Los paleontólogos han definido cinco grandes extinciones masivas, aquellas crisis bióticas en las que en cada caso desapareció al menos el 65% de los organismos y entre un 20 y un 25% de las familias, en un lapso geológico breve.

Fuente: wikipedia
  • La primera fue la ocurrida a finales del período Ordovícico, hace 438 millones de años, que terminó con muchas familias de braquiópodos y trilobites. De todas las glaciaciones conocidas, sólo la ordovícico-silúrica coincide con una extinción biológica masiva, aunque a finales de la glaciación permo-carbonífera ocurrió otra gran crisis biológica (extinción finipérmica) pero no parece tener una relación directa clara con dicha glaciación.
  • La segunda extinción masiva ocurrió en el Devónico tardío, hace 367 millones de años, durante la cual desaparecieron numerosos grupos de ammonitoideos, trilobites, braquiópodos, corales tubulados, gasterópodos y peces, entre otros.
  • La mayor extinción masiva fue la tercera, en el límite Pérmico-Triásico (formando el límite entre las eras Paleozoica y Mesozoica), hace unos 245 millones de años, que produjo la extinción del 90% de las especies marinas, el 50% de las familias animales y cerca del 80% de los géneros, desapareciendo la mayoría de los vertebrados terrestres dominantes, los trilobites y los corales primitivos. Sufrieron fuertes pérdidas los ammonites, braquiópodos, equinodermos, briozoos, conodontes y peces.
  • La cuarta extinción masiva al terminar el Triásico, hace 208 millones de años, que eliminó al 60% de las especies, entre las cuales se cuentan las pertenecientes a grupos como braquiópodos, moluscos, artrópodos y vertebrados terrestres.
  • La última es la que acabó con los dinosaurios y ammonites, al final del Cretácico (transición Cretácico-Paleógeno o límite K/Pg), hace 65 millones de años: Ver explicación tradicional en el siguiente artículo y una teoría alternativa en este otro artículo.
Estrato que marca el Límite K-Pg (con  elevada concentración de iridio) encontrado en todo el planeta 
Otras fases o picos de extinción masiva menos importantes en sus efectos ocurrieron en el Cámbrico superior, en el límite Jurásico-Cretácico, y en el Eoceno superior. Otros episodios de extinción menos definidos aún se han reconocido en zonas localizadas o han afectado a ciertos grupos restringidos.

Las estadísticas sobre grupos extinguidos y la duración de los acontecimientos producen polémicas, por las características incompletas del registro fósil, la diferencia en las probabilidades de fosilización de diferentes grupos, los criterios taxonómicos diversos que se aplican para reconocer un mismo nivel taxonómico y los niveles mínimos de extinción que deben considerarse como masivos.


Estas extinciones se han atribuido generalmente a causas endógenas de la propia biosfera, a la acción de supervolcanes y al impacto de asteroides, entre otras causas.

Existe la teoría que atribuye todas, o casi todas, las grandes extinciones a impactos meteoríticos. Se ha establecido estadísticamente que, aproximadamente cada 100 millones de años de media impacta un asteroide kilométrico contra la Tierra. Si se tiene en cuenta que la vida pluricelular lleva unos 600 millones de años debería haber ocurrido entre 5 y 6 grandes extinciones desde entonces. Y esas son las que realmente han sucedido. Las otras posibles causas atribuidas a glaciaciones globales o a erupciones masivas se consideran entre los efectos secundarios que un gran impacto podría producir por lo que, según algunas hipótesis, no serían más que sinergias de esa misma catástrofe cósmica.

También se considera como causa probable de extinciones menores o incluso de las más masivas a explosiones de supernovas cercanas. De hecho existe otra teoría que dice que dado que cada 25 millones de años aproximadamente el Sistema Solar (y, por tanto, la Tierra) entra en la zona densa de la galaxia (los brazos espirales) y se ve sometida a un mayor riesgo de explosiones violentas o al azote de vientos estelares intensos. Asimismo, la nube de Oort tiene un mayor riesgo de verse deformada y perturbada por el paso de estrellas cercanas con el consiguiente envío de cometas y asteroides hacia el Sistema Solar interior.


Muchos biólogos actuales piensan que estamos a las puertas de la extinción masiva del Holoceno, que será causada por el ser humano. E.O. Wilson en su libro The Future of Life estima que con el actual ritmo de destrucción humana de la biosfera la mitad de las formas de vida se extinguirá en 100 años. Otros científicos, en cambio, consideran que estas estimaciones son exageradas.

Crisis climáticas y crisis biológicas en la Historia de la Tierra

Aquí tenéis unos pequeños apuntes sobre las distintas hipótesis para explicar el origen de las glaciaciones,  que pueden agruparse en dos categorías:

A) Hipótesis solares (origen solar o astronómico): Se pueden deber a altibajos en la producción de energía solar o por una disminución de la radiación solar que llega hasta la Tierra: ¿posible relación con los ciclos de manchas solares?

Puesto que las manchas solares son más oscuras es natural suponer que más manchas solares signifiquen menos radiación solar. Sin embargo las áreas circundantes son más luminosas y el efecto global es que más manchas solares se asocian a un sol más luminoso. La variación es pequeña (del orden del 0,1%) y sólo se estableció por medidas por satélite de la variación solar a partir de los años ochenta.
Durante el Mínimo de Maunder (período de 1645 a 1715, cuando las manchas solares desaparecieron de la superficie del Sol, tal como observaron los astrónomos de la época) hubo unos inviernos anormalmente fríos e intensas nevadas tal como lo demuestran los registros históricos. La Tierra pudo haber refrescado casi 1 K.
Se ha sugerido que algunas de las glaciaciones fueron el resultado de prolongados periodos de falta de actividad solar.

B) Hipótesis geológicas (origen terrestre): Hay de varios tipos:
  • Distribución de los continentes. Los continentes tienen mayor albedo que los océanos, de tal forma que un supercontinente o Pangea cerca de un polo será un punto de partida favorable para una glaciación.
  • Circulación oceánica global. Si los continentes bloquean las corrientes cálidas ecuatoriales y se favorece una circulación circumpolar, puede darse una glaciación en los continentes próximos a los polos, ya que éstos quedan aislados de las corrientes cálidas.
  • Orogenias. Las orogenias provocan un aumento en la superficie continental (mayor albedo) y, además, pueden interrumpir corrientes oceánicas, lo que favorecerá las glaciaciones. De hecho, se ha podido establecer la relación entre ciertas fases orogénicas (caledónica, hercínica, alpina) y algunas glaciaciones.
  • Vulcanismo explosivo. Este inyecta grandes cantidades de polvo a la atmósfera, lo que provoca un aumento del albedo y una bajada en la temperatura global.
  • Hipótesis del antiinvernadero. Una glaciación también podría ocurrir por una disminución del CO2 atmosférico. Esto pudo ocurrir en la glaciación eocámbrica cuando quizás apareció la ozonosfera y el fitoplancton pudo desarrollarse explosivamente, absorbiendo gran parte del CO2 para realizar la fotosíntesis.
Para explicar la sucesión de periodos glaciales e interglaciales la mejor teoría es la hipótesis de Milankovitch. Esta propone que las tres variaciones de detalle de la órbita terrestre (excentricidad, variación en la inclinación del eje de rotación y el cabeceo de éste) tienen periodicidades que, sumadas, daban una curva análoga a las variaciones de temperatura de los periodos glaciales e interglaciales.

En la medida que la paleontología fue teniendo registros más completos, y pudo determinarse con mayor precisión las fechas de aparición y extinción de diversos grupos, comenzó a hacerse evidente que en determinados momentos de la historia de la Tierra se han producido extinciones simultáneas de grupos biológicos muy diversos. Se reconoció que los fenómenos de extinción son de dos tipos: la extinción de fondo, que afecta regularmente a pocas especies, y las extinciones masivas, que esporádicamente afectan a un gran número de diversos organismos.

Los paleontólogos actualmente aceptan que estas crisis pudieron tener causas terrestres o extraplanetarias, con drásticas consecuencias sobre los ecosistemas de la Tierra en su conjunto, y que de no haberse producido esas grandes catástrofes, no habrían surgido y evolucionado nuevos grupos biológicos, por lo tanto las extinciones son fenómenos evolutivos importantes para la renovación y aparición de innovaciones en la ecosfera. Algunos especialistas han reconocido veinte o más de dichos procesos de extinción, pero algunos son más convincentes que otros.

Los paleontólogos han definido cinco grandes extinciones masivas, aquellas crisis bióticas en las que en cada caso desapareció al menos el 65% de los organismos y entre un 20 y un 25% de las familias, en un lapso geológico breve.

Fuente: wikipedia
  • La primera fue la ocurrida a finales del período Ordovícico, hace 438 millones de años, que terminó con muchas familias de braquiópodos y trilobites. De todas las glaciaciones conocidas, sólo la ordovícico-silúrica coincide con una extinción biológica masiva, aunque a finales de la glaciación permo-carbonífera ocurrió otra gran crisis biológica (extinción finipérmica) pero no parece tener una relación directa clara con dicha glaciación.
  • La segunda extinción masiva ocurrió en el Devónico tardío, hace 367 millones de años, durante la cual desaparecieron numerosos grupos de ammonitoideos, trilobites, braquiópodos, corales tubulados, gasterópodos y peces, entre otros.
  • La mayor extinción masiva fue la tercera, en el límite Pérmico-Triásico (formando el límite entre las eras Paleozoica y Mesozoica), hace unos 245 millones de años, que produjo la extinción del 90% de las especies marinas, el 50% de las familias animales y cerca del 80% de los géneros, desapareciendo la mayoría de los vertebrados terrestres dominantes, los trilobites y los corales primitivos. Sufrieron fuertes pérdidas los ammonites, braquiópodos, equinodermos, briozoos, conodontes y peces.
  • La cuarta extinción masiva al terminar el Triásico, hace 208 millones de años, que eliminó al 60% de las especies, entre las cuales se cuentan las pertenecientes a grupos como braquiópodos, moluscos, artrópodos y vertebrados terrestres.
  • La última es la que acabó con los dinosaurios y ammonites, al final del Cretácico (transición Cretácico-Terciario o límite K/T), hace 65 millones de años: Ver explicación tradicional en el siguiente artículo y una teoría alternativa en este otro artículo.
Estrato que marca el Límite K-T (con  elevada concentración de iridio) encontrado por todo el planeta 
Otras fases o picos de extinción masiva menos importantes en sus efectos ocurrieron en el Cámbrico superior, en el límite Jurásico-Cretácico, y en el Eoceno superior. Otros episodios de extinción menos definidos aún se han reconocido en zonas localizadas o han afectado a ciertos grupos restringidos.

Las estadísticas sobre grupos extinguidos y la duración de los acontecimientos producen polémicas, por las características incompletas del registro fósil, la diferencia en las probabilidades de fosilización de diferentes grupos, los criterios taxonómicos diversos que se aplican para reconocer un mismo nivel taxonómico y los niveles mínimos de extinción que deben considerarse como masivos.


Estas extinciones se han atribuido generalmente a causas endógenas de la propia biosfera, a la acción de supervolcanes y al impacto de asteroides entre otras.

Existe la teoría que atribuye todas, o casi todas, las grandes extinciones a impactos meteoríticos. Se ha establecido estadísticamente que, aproximadamente cada 100 millones de años de media impacta un asteroide kilométrico contra la Tierra. Si se tiene en cuenta que la vida pluricelular lleva unos 600 millones de años debería haber ocurrido entre 5 y 6 grandes extinciones desde entonces. Y esas son las que realmente han sucedido. Las otras posibles causas atribuidas a glaciaciones globales o a erupciones masivas se consideran entre los efectos secundarios que un gran impacto podría producir por lo que, según algunas hipótesis, no serían más que sinergias de esa misma catástrofe cósmica.

También se considera como causa probable de extinciones menores o incluso de las más masivas a explosiones de supernovas cercanas. De hecho existe otra teoría que dice que dado que cada 25 millones de años aproximadamente el Sistema Solar (y, por tanto, la Tierra) entra en la zona densa de la galaxia (los brazos espirales) y se ve sometida a un mayor riesgo de explosiones violentas o al azote de vientos estelares intensos. Asimismo, la nube de Oort tiene un mayor riesgo de verse deformada y perturbada por el paso de estrellas cercanas con el consiguiente envío de cometas y asteroides hacia el Sistema Solar interior.

Muchos biólogos piensan que estamos a las puertas de la extinción masiva del Holoceno, que será causada por el ser humano. E.O. Wilson en su libro The Future of Life estima que con el actual ritmo de destrucción humana de la biosfera la mitad de las formas de vida se extinguirán en 100 años. Otros científicos consideran que estas estimaciones son exageradas.