Fórmulas electorales (III)

Vamos a ver nuevos métodos de reparto, no estrictamente proporcionales, que utilizan una sucesión creciente de divisores: $$d_1< d_2 < d_3 < \ldots d_n$$donde n es el número de escaños a repartir. Los votos obtenidos por cada partido son divididos sucesivamente por esos n divisores. Se asignan escaños a las n mayores cantidades obtenidas.
  • Ley de Hill-Huntington:
  • El matemático americano Edward V, Hutington (174-1952)  y el estadístico del U.S. Census Bureau Joseph A. Hill (1860.1938)  idearon una nueva fórmula de reparto mediante divisores. Utilizar como divisores la media geométrica de dos enteros consecutivos:
    $$G(a,b)=\sqrt{a \cdot b}$$
     Se aplica la fórmula a cada uno de los candidatos: $$q_{i,k}=[\frac{v_i}{\sqrt{k_i\cdot (k_i+1)}}],\; k\neq 0,\; q_{i,0}=v_i\; \; \;k=0,1,2, \ldots$$
     y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.
  • Ley de Dean:
  • James Dean (1776-1849), matemático y profesor de historia natural de la Universidad de Vertmon lo desarrolló en 1832, como alternativa al método de Jefferson, aunque nunca llegó a aplicarse. Utiliza como divisores la media armónica de dos enteros consecutivos:
    $$H(a,b)=\frac{2}{\frac{1}{a}+\frac{1}{b}}=\frac{2 \cdot a \cdot b}{a+b+1}$$ quien la propuso unos años antes aunque con alguna pequeña diferencia.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{\frac{2 \cdot k \cdot (k+1)}{2 \cdot k+1}}],\; k\neq 0,\; q_{i,0}=v_i\; \; \;k=0,1,2, \ldots$$
    y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.
Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se pueden introducir, en las celdas correspondientes, los votos a cada partido.
  • Con las flechas se puede elegir el número de escaños a repartir.
  • Con las flechas se puede fijar el mínimo de votos  para entrar en el reparto.
  • Pulsando el botón 'Hill-Huntington' o 'Deal' se puede elegir el método de reparto.
  • El botón 'calcular' hace el reparto de escaños.
  • Una tabla muestra los sucesivos cocientes.

Fórmulas electorales (II)

Vamos a ver otros métodos de reparto, no estrictamente proporcionales, que utilizan una sucesión creciente de divisores: $$d_1< d_2 < d_3 < \ldots d_n$$donde n es el número de escaños a repartir. Los votos obtenidos por cada partido son divididos sucesivamente por esos n divisores. Se asignan escaños a las n mayores cantidades obtenidas.
  • Ley D'Hont:
  • Su nombre se debe a Victor D'Hondt (1841-1901), jurista belga que lo propuso en 1878. En realidad este método fue propuesto por Thomas Jefferson (1743-1826), tercer presidente de los Estados Unidos, del que también recibe su nombre, y lo introdujo para el reparto de escaños en los EEUU en 1794.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{k+1}]\; \; \;k=0,1,2, \ldots$$ y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.
  • Ley de Sainte-Laguë:
  • También conocida por el nombre de Ley de Webster. Aunque introducida por André Sainte-Laguë (1852-1950), matemático francés en 1910, fue Daniel Webster (1782-1852), senador de los EEUU en el siglo XIX, quien la propuso unos años antes aunque con alguna pequeña diferencia.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{2k+1}]\; \; \;k=0,1,2, \ldots$$ 
    y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.
Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se pueden introducir, en las celdas correspondientes, los votos a cada partido.
  • Con las flechas se puede elegir el número de escaños a repartir.
  • Con las flechas se puede fijar el mínimo de votos  para entrar en el reparto.
  • Pulsando el botón 'D'Hont' o 'Sainte-Laguë' se puede elegir el método de reparto.
  • El botón 'calcular' hace el reparto de escaños.
  • Una tabla muestra los sucesivos cocientes.

Fórmulas electorales (I)

Una fórmula electoral es el cálculo matemático mediante el cual, después de una votación, se distribuyen los escaños de una asamblea en función de los votos del electorado. Las fórmulas electorales se clasifican en dos grandes tipos: mayoritarias y proporcionales o de reparto.
Las formas mayoritarias pretenden la elección de un único candidato, con exclusión de los demás. El candidato ganador es el que obtiene el mayor número votos en relación con sus rivales electorales. Se suelen aplicar en circunscripciones uninominales. Aunque existen distintas variantes, las más conocidas son:
  • Mayoría absoluta:
  • También conocida como Fórmula de Mayoría, el ganador debe alcanzar más del 50% de los votos. No es una fórmula muy utilizada porque aunque da estabilidad, favorece a los partidos mayoritarios pero perjudica a las minorías que difícilmente obtienen representación. En concreto en Francia se establece un mecanismo corrector: Cuando no se alcanza ese porcentaje, se establece una segunda vuelta o ballotage entre los dos candidatos más votados.
  • Mayoría relativa:
  • Conocida también como Fórmula Pluralista, no exige la obtención de mayorías absolutas, sino de mayorías relativas o simples. El porcentaje para obtener la elección aumenta o disminuye en función del número de partidos o candidatos en liza. Cuanto mayor sea el número de éstos, más bajo será el porcentaje necesario para resultar elegido, y al contrario, cuanto más reducido sea el número de candidatos que se presenten, mayor será el porcentaje requerido.
La fórmulas proporcionales tienen como objetivo repartir los escaños de cada circunscripción de manera proporcional a los votos obtenidos por cada partido. Los métodos del Resto Mayor, también conocidos como de Cociente o Cuota utilizan el sistema proporcional para el reparto de escaños. Para los escaños no asignados se utilizan los restos, a los que se les aplica el sistema mayoritario.

Sean n escaños a repartir entre varios partidos y un total de v votos. Se establece un cociente q que indica el número de votos necesarios para obtener un escaño. De esta forma se asignan escaños a cada partido de acuerdo con sus votos obtenidos. Los escaños no asignados se conceden según los restos de cada partido de mayor a menor. Existen tres fórmulas proporcionales:
  • Fórmula Hare: q=v/n
  • Fórmula Droop: q=v/(n+1)
  • Fórmula Imperiali: q=v/(n+2)
Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se pueden introducir, en las celdas correspondientes, los votos a cada partido.
  • El botón 'inicio' borra los votos de todos los partidos menos el A.
  • Con las flechas se puede elegir el número de escaños a repartir.
  • El botón 'asignar restos' añade los escaños no asignados.
  • Pulsando el botón 'Hare', 'Droop' o 'Imperiali' se puede elegir el método de reparto.
  • Un gráfico muestra los porcentajes de votos y otro los escaños obtenidos por cada partido.

Un juego ‘burro’ (II)

Como vimos, hay juegos en los que las ganancias disminuyen cuando aumenta la probabilidad de ganar en cada turno. Son los denominados donkey games o 'juegos burro'.

Recordemos el funcionamiento del juego:

Una moneda tiene una probabilidad p de salir cara (C) y una probabilidad 1-p de salir cruz (X). Se realizan series de lanzamientos. En cada turno si sale cara se gana un euro, si sale cruz se pierde un euro y si sale lo mismo que en la tirada anterior se cancela la ganancia o la pérdida. Por ejemplo, en la secuencia XCCC la ganancia será cero. Si p=0.5 el juego es justo y la ganancia media es cero. En cambio si p aumenta el jugador termina perdiendo y si p disminuye el jugador termina ganando.
Supongamos muchos jugadores participando simultáneamente y observamos un turno determinado: Sea N0 el número de jugadores sin ganancia ni pérdida,  N1 con ganancia  N2 con pérdida en un turno determinado.
En el turno siguiente, el número de jugadores sin ganancia ni pérdida será: $$N_0'=pN_1+(1-p)N_2$$ pues sale cara y había cara o sale cruz y había cruz.
El número de jugadores con ganancia será: $$N_1'=pN_0+pN_2$$ pues sale cara y no había nada o sale cara y había cruz.
El número de jugadores con pérdida será:
$$N_2'=(1-p)N_0+(1-p)N_1$$ pues sale cruz y no había nada o sale cruz y había cara.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar la probabilidad de obtener cara y el número de jugadores.
  • En una tabla se muestran el resultado de cada tirada: cara (C) o cruz (X) y la situación antes y después de la tirada: cara (C), cruz (X) o nada (N).
  • El botón 'inicio' permite empezar el juego.
  • Cada vez que se pulsa el botón 'jugar' se realiza una jugada simultánea.
  • El botón 'serie' permite realizar 100 jugadas simultáneas.
  • Un gráfico muestra los valores N0, N1 y N2 teóricos y experimentales y otro gráfico la ganancia media G.M., teórica y experimental.
Descargar .XLS
  • Para completar la información consultar 'Un juego burro (I)'.
  • Basado en un artículo de Juan M. R. Parrondo (Investigación y Ciencia).

Un juego ‘burro’ (I)

Aunque parezca paradójico, hay juegos en los que las ganancias disminuyen cuando aumenta la probabilidad de ganar en cada turno. Se denominan donkey games o 'juegos burro'. Christian van den Broeck y Bart Cleuren, físicos del Centro Universitario de Limburg, en Bélgica, estudian este tipo de juegos.Veamos uno de ellos:

Una moneda tiene una probabilidad p de salir cara (C) y una probabilidad 1-p de salir cruz (X). Se realizan series de lanzamientos. En cada turno si sale cara se gana un euro, si sale cruz se pierde un euro y si sale lo mismo que en la tirada anterior se cancela la ganancia o la pérdida. Por ejemplo, en la secuencia XCCC la ganancia será cero. Si p=0.5 el juego es justo y la ganancia media es cero. En cambio si p aumenta el jugador termina perdiendo y si p disminuye el jugador termina ganando.
Supongamos muchos jugadores participando simultáneamente y observamos un turno determinado: Sea N0 el número de jugadores sin ganancia ni pérdida,  N1 con ganancia  N2 con pérdida en un turno determinado.
En el turno siguiente, el número de jugadores sin ganancia ni pérdida será: $$N_0'=pN_1+(1-p)N_2$$ pues sale cara y había cara o sale cruz y había cruz.
El número de jugadores con ganancia será: $$N_1'=pN_0+pN_2$$ pues sale cara y no había nada o sale cara y había cruz.
El número de jugadores con pérdida será:
$$N_2'=(1-p)N_0+(1-p)N_1$$ pues sale cruz y no había nada o sale cruz y había cara.

 Las soluciones estacionarias se obtienen cuando, después de muchas iteraciones, los nuevos valores coinciden con los anteriores. Resolviendo el sistema:
$$\begin{eqnarray*} N_0 = pN_1+(1-p)N_2 \\ N_1=pN_0+pN_2 \\ N_2=(1-p)N_0+(1-p)N_1 \end{eqnarray*}$$ se obtienen las soluciones: $$N_1=\frac{p(2-p)}{p^2-p+1}N_0 \wedge N_2=\frac{1-p^2}{p^2-p+1}N_0$$ La ganancia en un turno es: $$G=pN_0-(1-p)N_0-N_1+N_2=$$ $$(2p-1)N_0-\frac{p(2-p)}{p^2-p+1}N_0+\frac{1-p^2}{p^2-p+1}N_0=\frac{p(p-1)(2p-1)}{p^2-p+1}N_0$$ El número total de jugadores es: $$N_0+N_1+N_2=N_0+\frac{p(2-p)}{p^2-p+1}N_0+\frac{1-p^2}{p^2-p+1}N_0=$$ $$\frac{-p^2+p+2}{p^2-p+1}N_0=\frac{-(p+1)(p-2)}{p^2-p+1}N_0$$ La ganancia media es: $$\overline{G}=\frac{\frac{p(p-1)(2p-1)}{p^2-p+1}}{\frac{-(p+1)(p-2)}{p^2-p+1}}=\frac{p(1-p)(1-2p)}{(1+p)(2-p)}$$
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar el número de jugadores y la probabilidad de obtener cara.
  • Se puede cambiar el turno del juego y obtener el número de jugadores en cada uno de los casos  y la ganancia media en cada turno.
  • Unos gráficos muestran los posibles valores de la ganancia media,  la evolución de la ganancia media y del número de jugadores en cada caso.
Descargar .XLS
  • Basado en un artículo de Juan M. R. Parrondo (Investigación y Ciencia).

Movimiento armónico simple (III)

Composición de dos movimientos armónicos simples (MAS) de direcciones perpendiculares.

Misma frecuencia:

Las ecuaciones son:
$$x=Asen(wt) \wedge y=Bsen(wt+\phi)$$
La resultante será:
$$\frac{x^2}{A^2}+\frac{y^2}{B^2}-\frac{2xy}{AB}cos\phi=sen^2\phi$$
Si están en fase: $$\phi=0 \rightarrow y=\frac{B}{A}x$$ Si están en oposición: $$\phi=180º \rightarrow y=-\frac{B}{A}x$$ Si están en cuadratura: $$\phi=90º \rightarrow \frac{x^2}{A^2}+\frac{y^2}{B^2}=1$$ Distinta frecuencia:

Las ecuaciones son:
$$x=Asen(w_1t) \wedge y=Bsen(w_2t+\phi)$$
Al ser las frecuencias diferentes, la diferencia de fase no es constante y la figura se va modificando de modo continuo, pero siempre inscrita en un rectángulo de semilados A y B.
Se obtienen curvas muy variadas según la relación de los periodos de los movimientos componentes y la diferencia de fase inicial (figuras de Lissayous).

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar la  AMPLITUD, la FRECUENCIA ANGULAR de cada movimiento y el DESFASE entre ellos.
  • Se muestran las gráficas de la elongación de los movimientos componentes y del movimiento resultante.
  • Al variar el MOVIMIENTO, cambia la posición del punto en cada una de las gráficas.
Descargar .XLS

Piedra, papel y tijera

Es un juego de manos que consta de tres elementos:

La piedra  gana a la tijera rompiéndola, la tijera vence al papel cortándolo y el papel trunfa sobre la piedra envolviéndola.

Matemáticamente es un juego no transitivo y según la teoría de juegos, la estrategia óptima es la elección aleatoria. Como el número de partidas es reducido, tiene mucha importancia la psicología de los jugadores.

Los jugadores dicen Piedra... Papel... y ¡Tijera! y justo al acabar muestran todos al mismo tiempo una de sus manos, de modo que puede verse la elección de cada uno.

Existe una expansión que incorpora dos nuevos elementos: Spock y lagarto, creada por Sam Kass y apareció en un capítulo de la comedia The Big Bang Theory.


ganador acción perdedor
tijera decapita lagarto
tijera corta papel
papel tapa piedra
papel desautoriza Spock
piedra lapida lagarto
piedra aplasta tijera
lagarto come papel
lagarto envenena Spock
Spock vaporiza piedra
Spock rompe tijera


Sigue las instrucciones de utilización del modelo de Excel, que puedes descargar a continuación, y que te permite jugar a Piedra... Papel... y ¡Tijera! .
  • Al pulsar cualquiera de los botones inicio se pide el número de partidas que se desea jugar.
  • Pulsando los botones piedra, papel o tijera eliges tu opción y el ordenador juega aleatoriamente contra ti.
  • Los resultados se muestran en la gráfica de la izquierda.
  • Pulsando el botón jugar se ejecutan el número de partidas elegidas entre los jugadores A y B que juegan de manera aleatoria.
  • Los resultados se muestran en la gráfica de la derecha.
Descargar .XLS

Tangentes exteriores a dos circunferencias

Dadas dos circunferencias: de centro A y radio R1 (la mayor) y de centro B y radio R2 (la menor).
Se construye una circunferencia de centro A y radio R1-R2 y otra de centro C  y diámetro AB.
Estas circunferencias intersectan en los puntos D y E y se trazan las rectas que pasan por estos puntos y por el centro A.
Estas rectas, a su vez, cortan a la circunferencia de radio R1 en los puntos F y G y trazando las perpendiculares por estos puntos a las rectas anteriores, se obtiene las rectas tangentes.
Haz click en "más información" para ver el applet.


> Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Sigue la construcción "paso a paso" y con los deslizadores podrás cambiar los radios de las circunferencias y desplazarlas moviendo los centros A y B. Desactivando la casilla verás sólo las circunferencias y sus rectas tangentes.

Sistema depredador-presa

La depredación es un tipo de interacción biológica en la que un individuo de una especie animal (depredador) caza a otro individuo (presa) para subsistir.

Los depredadores controlan así el número de individuos de la especie presa, pero a su vez las presas, según su abundancia, controlan el número de individuos de la especie depredadora.

Esta interacción entre depredadores y presa y su evolución en el tiempo fue analizada matemáticamente a través de las ecuaciones de Lotka y Volterra.

En el siguiente modelo se añade una variable que representa la acción humana a través de la caza tanto de presas como de depredadores.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • PRESAS INICIALES (Po): Población inicial de presas(se introduce en la celda gris).
  • DEPREDADORES INICIALES (Do): Población inicial de depredadores (se introduce en la celda gris).
  • CRECIMIENTO PRESA (Cp): Crecimiento de presas en ausencia de depredador.
  • MORTALIDAD PRESA (Mp): Mortalidad de presas por presencia del depredador (porcentajes inferiores al 1%).
  • CRECIMIENTO DEPREDADOR (Cd): Crecimiento de depredadores por la presencia de presas (porcentaje inferior al de mortalidad de presas).
  • MORTALIDAD DEPREDADOR (Md): Mortalidad de depredadores por la ausencia de presas.
  • CAPTURAS INDISCRIMINADAS (Ci): Porcentaje de capturas o individuos eliminados por la acción humana, tanto de depredadores como de presas.
  • TIEMPO (T): Indica en cada instante la población de depredadores y presas.
Descargar .XLS
Cuestionario y solucionario

El número de oro y otros números metálicos

A la sucesión de recurrencia:
$$u_{n+1}=pu_{n}+qu_{n-1}$$
le correspnde, en ecuaciones en diferencias, la siguiente ecuación característica:
$$x^{2}-px-q=0$$
cuya solución positiva es:
$$\frac{p+\sqrt{p^2+4q}}{2}$$
Se obtienen así los llamados números metálicos:

p 1 2 3 1 1
q 1 1 1 2 3
número oro plata bronce cobre niquel
valor $$\frac{1+\sqrt{5}}{2}$$ $$1+\sqrt{2}$$ $$\frac{3+\sqrt{13}}{2}$$ $$2$$ $$\frac{1+\sqrt{13}}{2}$$

La sucesión con p=q=1 es la conocida sucesión de Fibonacci.
La sucesión generalizada de Fibonacci es:$$G(n+1)=pG(n)+qG(n-1)$$ Y si a y b son los términos iniciales:
$$a,b,pb+qa,p(pb+qa)+qb,...$$ Operando en la expresión recurrente y tomando límites: $$\frac{G(n+1)}{G(n)}=p+\frac{G(n-1)} {G(n)}q$$ $$x=\lim_{n \rightarrow \infty} \frac{G(n+1)}{G(n)}$$ $$x=p+\frac{q}{x}$$ $$x^2-px-q=0$$
se obtiene la ecuación característica de la ecuación en diferencias.

Por tanto, el cociente de dos términos consecutivos de la sucesión de Fibonacci Generalizda tiende siempre al número metálico corespondiente.

La familia de los números metálicos fue introducida en 1995 por la matemática argentina Vera W. Spinadel.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se pueden modificar los parámetros p y q de la sucesión recurrente.
  • Se pueden modificar los dos primeros términos de la sucesión F0 y F1.
  • Se muestran las tablas con los 20 primeros términos y los cocientes entre términos consecutivos.
  • Se muestra la gráfica que se estabiliza hacia el número metálico correspondiente.
  • Se muestra el valor del número metálico correspondiente.
Descargar .XLS