Movimiento armónico amortiguado

La hipótesis de que el rozamiento no tenga influencia en el movimiento armónico de un punto unido a un muelle o de un péndulo raramente se produce en la práctica. La experiencia enseña que el medio en el que oscila el punto se opone a dichas oscilaciones con una fuerza llamada resistencia viscosa, que en la mayoría de los casos es proporcional a la velocidad del punto, siendo b el coeficiente de rozamiento del medio.
$$R=-bv$$

Por tanto la ley de Newton aplicada a un punto de masa m unido a un muelle de elasticidad k será sobre el eje x:
$$-kx-bx'=mx'$$
$$x'+\frac{b}{m}x'+\frac{k}{m}=0$$
Esta ecuación diferencial tiene como solución:
$$x=Ae^{- \frac{b}{2m}}cos(\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}t+\phi)$$
El coeficiente de amortiguamiento es:
$$\alpha=\frac{b}{2m}$$
La pulsación o frecuencia angular es:
$$\omega=\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}$$
Se define el factor de calidad:
$$Q=\sqrt{\frac{km}{b}}$$
y es igual a $$2·\pi$$ veces el inverso de las pérdidas de energía por período. Si b=0, entonces se obtiene el movimiento armónico clásico.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir el valor de la elasticidad, la masa, la amplitud inicial, el desfase y el coeficiente de rozamiento.
  • Se obtienen la pulsación,el coeficiente de amortiguamiento y el factor de calidad.
  • Las gráficas representan la posición y la velocidad, las energías cinética y potencial y el espacio de fases v-x a lo largo del tiempo.
  • Al modificar el instante de tiempo se muestran los valores de la posición, velocidad, energía cinética, energía potencial y energía total.
Descargar .XLS

Movimiento armónico simple (III)

Composición de dos movimientos armónicos simples (MAS) de direcciones perpendiculares.

Misma frecuencia:

Las ecuaciones son:
$$x=Asen(wt) \wedge y=Bsen(wt+\phi)$$
La resultante será:
$$\frac{x^2}{A^2}+\frac{y^2}{B^2}-\frac{2xy}{AB}cos\phi=sen^2\phi$$
Si están en fase: $$\phi=0 \rightarrow y=\frac{B}{A}x$$ Si están en oposición: $$\phi=180º \rightarrow y=-\frac{B}{A}x$$ Si están en cuadratura: $$\phi=90º \rightarrow \frac{x^2}{A^2}+\frac{y^2}{B^2}=1$$ Distinta frecuencia:

Las ecuaciones son:
$$x=Asen(w_1t) \wedge y=Bsen(w_2t+\phi)$$
Al ser las frecuencias diferentes, la diferencia de fase no es constante y la figura se va modificando de modo continuo, pero siempre inscrita en un rectángulo de semilados A y B.
Se obtienen curvas muy variadas según la relación de los periodos de los movimientos componentes y la diferencia de fase inicial (figuras de Lissayous).

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar la  AMPLITUD, la FRECUENCIA ANGULAR de cada movimiento y el DESFASE entre ellos.
  • Se muestran las gráficas de la elongación de los movimientos componentes y del movimiento resultante.
  • Al variar el MOVIMIENTO, cambia la posición del punto en cada una de las gráficas.
Descargar .XLS

La cicloide (III)

La cicloide tiene la propiedad de ser tautócrona:

Si desde dos puntos, a diferentes alturas de una cicloide invertida, dejamos caer dos bolas, éstas llegan a la vez a la parte más baja a pesar de hacer recorridos diferentes.

Christiann Huygens fue el primero en descubrir esa propiedad y aplicarlo a los relojes de péndulo. Aunque se variase la amplitud del péndulo, el período de tiempo siempre sería el mismo si el recorrido de la lenteja del péndulo fuera el de una cicloide.

Situando el péndulo entre dos topes formados por medias cicloides se consigue el objetivo.

Haz click en "más información" para ver el applet.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Con el deslizador puedes modificar el tiempo y observar la posición de las dos bolas. Pulsando el botón de "play" se activa la animación.

Las ecuaciones de la cicloide invertida son:
$$x=r\alpha-rsen\alpha \wedge y=rcos\alpha-r$$
La velocidad de caída de una bola desde un punto de la curva a otro inferior es:
$$v_\alpha=\sqrt{2gh}$$$$h=y_\beta-y_\alpha=rcos\beta-rsen\alpha$$$$cos\beta=2cos^2\frac{\beta}{2}-1$$ $$v_\alpha=2\sqrt{gr}\sqrt{cos^2\frac{\beta}{2}-cos^2\frac{\alpha}{2}}$$$$ds=\sqrt{(\frac{dx}{d\alpha})^2+(\frac{dy}{d\alpha})^2}d\alpha=2rsen\frac{\alpha}{2}d\alpha$$$$dt=\frac{ds}{v}=\frac{2rsen\frac{\alpha}{2}}{2\sqrt{gr}\sqrt{cos^2\frac{\beta}{2}-cos^2\frac{\alpha}{2}}}$$ $$t=\sqrt{\frac{r}{g}}\int_\beta^{\pi}\frac{sen\frac{\alpha}{2}}{\sqrt{cos^2\frac{\beta}{2}-cos^2\frac{\alpha}{2}}}\,\mathrm{d}\alpha=$$ $$2\sqrt{\frac{r}{g}}\int_0^{cos\frac{\beta}{2}}\frac{1}{\sqrt{cos^2\frac{\beta}{2}-u^2}}\,\mathrm{d}u=$$ $$2\sqrt{\frac{r}{g}}\int_0^1\frac{1}{\sqrt{1-x^2}}\,\mathrm{d}x=\frac{\pi}{2}\sqrt{\frac{r}{g}}$$

Por tanto, el tiempo recorrido es independiente del punto de partida. Es una constante que depende del parámetro r de la cicloide.

Movimiento armónico simple (II)

Composición de dos movimientos armónicos simples (MAS) de la  misma dirección:

Misma frecuencia:

Las ecuaciones son:
$$x_1=A_1sen(wt+\phi_1) \wedge x_2=A_2sen(wt+\phi_2)$$
La resultante será:
$$x=x_1+x_2=Asen(wt+\phi)$$
Si están en fase: $$A=A_1+A_2$$ Si están en oposición: $$A=A_1-A_2$$  

Distinta frecuencia:

Las ecuaciones son:
$$x_1=A_1sen(w_1t) \wedge x_2=A_2sen(w_2t)$$ $$A=A_1+A_2$$
La amplitud en general es:
 $$A=\sqrt{A_1^2+A_2^2+2A_1A_2cos(w_1-w_2)t}$$

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar la  AMPLITUD, la FRECUENCIA ANGULAR de cada movimiento y el DESFASE entre ellos.
  • Se muestran el PERÍODO, la ELONGACIÓN, la VELOCIDADAD y la ACELERACIÓN de cada movimiento.
  • Se muestran la ELONGACIÓN, la VELOCIDADAD y la ACELERACIÓN del movimiento resultante.
  • Se puede elegir la representación de las elongaciones, velocidades o aceleraciones de los movimientos y de su resultante pulsando el botón correspondiente.
  • Se puede elegir el INTERVALO, de representación de las gráficas de la elongación, velocidad y aceleración del movimiento resultante.
  • Al variar el INSTANTE, cambia la posición del punto en el movimiento, al mismo tiempo que el punto que representa su elongación, su velocidad y su aceleración en las gráficas.
Descargar .XLS

Movimiento armónico simple (I)

Se llama movimiento ármónico simple (MAS) el que posee un punto que se mueve a lo largo del diámetro de una circunferencia, ocupando en cada instante la proyección sobre dicho diámetro de otro punto auxiliar que recorre la circunferencia, con movimiento circular uniforme.

La elongación es:
$$x=Asen(wt+\phi)$$
Derivando, se obtiene la velocidad:
$$v=-wAcos(wt+\phi)$$
Y volviendo a derivar, se obtiene la aceleración:
$$a=-w^2Asen(wt+\phi)=-w^2x$$
Por tanto el MAS responde a esta ecuación diferencial:
$$\frac{d^2x}{d^2t}+w^2x=0$$
La amplitud y el desfase se pueden obtener de la siguiente manera:
$$A=\sqrt{x_0^2+\frac{v_0}{w^2}}$$
$$tg\phi=\frac{x_0w}{v_0}$$

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar la  AMPLITUD, el PERÍODO y el DESFASE.
  • Se muestran la FRECUENCIA ANGULAR, la ELONGACIÓN, la VELOCIDADAD y la ACELERACIÓN.
  • Se puede elegir el INTERVALO, de representación de las gráficas correspondientes.
  • Al variar el INSTANTE, cambia la posición del punto en el movimiento, al mismo tiempo que el punto que representa su elongación, su velocidad y su aceleración en las gráficas.
Descargar .XLS

La cicloide (III)

El matemático y físico del siglo XVII, Christiaan Huygens, fue el primer constructor serio de relojes de péndulo. Construyó uno que tenía una propiedad muy especial: aunque la amplitud del movimiento del péndulo variase , seguía marcando el tiempo igual de bien.
¡Tenía el mismo periódo para cualquier amplitud!

Construyó un péndulo que describiera una cicloide invertida: el péndulo tiene como topes dos arcos de cicloide.
La curva que describía el péndulo era tautócrona: Si dejas caer dos canicas desde dos puntos difrentes de una cicloide invertida, ambas llegan al mismo tiempo al punto más bajo.
 Haz click en "más información" para ver el applet.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Pulsando el botón de "play" se activa la animación. El deslizador de tiempo permite controlar las posiciones de ambos móviles.

Veamos la justificación de la tautocronía:
Las ecuaciones de la cicloide son: $$x=r \alpha-rsen \alpha \wedge y=rcos \alpha-r$$
Si la partícula parte de A en reposo, la velocidad que alcanza en B depende de la diferencia de altura h entre los puntos y no de la trayectoria descrita, según la fórmula: $$v=\sqrt{2g(h_B-h_A)}=\sqrt{2gR(cos \beta-cos \alpha)}$$
Por trigonometría se obtiene: $$v=2\sqrt{Rg}\sqrt{cos^2(\frac{\beta}{2})-cos^2(\frac{\alpha}{2})}$$

Derivando las ecuaciones de la cicloide:
 $$\frac{dx}{d\alpha}=r-rcos\alpha \wedge \frac{dy}{d\alpha}=-rsen\alpha$$
el elemento de longitud es:
 $$ds=\sqrt{(\frac{dx}{d\alpha})^2+(\frac{dy}{d\alpha})^2}=2Rsen(\frac{\alpha}{2})$$
El elemento de tiempo:
 $$dt=\frac{ds}{v}=\frac{2Rsen(\frac{\alpha}{2})}{2\sqrt{Rg}\sqrt{cos^2(\frac{\beta}{2})-cos^2(\frac{\alpha}{2})}}$$
E integrando:
$$t=\sqrt{\frac{R}{g}}\int_{\beta}^{\pi}\frac{sen(\frac{\alpha}{2})}{\sqrt{cos^2(\frac{\beta}{2})-cos^2(\frac{\alpha}{2})}}\,\mathrm{d}\alpha$$
Haciendo los cambios:  $$cos(\frac{\alpha}{2})=u \wedge u=cos(\frac{\beta}{2})x$$
$$t=2\sqrt{\frac{R}{g}}\int_0^{cos(\frac{\beta}{2})}\frac{du}{\sqrt{cos^2(\frac{\beta}{2})-u^2}}$$
$$t=2\sqrt{\frac{R}{g}}\int_0^1\frac{du}{\sqrt{cos^2(\frac{\beta}{2})-u^2}}=\pi \sqrt{\frac{R}{g}}$$

La cicloide (II)

El problema de la Braquistócrona fue el motivo de una amarga contienda entre los hermanos Johann y Jakob Bernoulli.
Dados dos puntos A y B en un plano vertical, hallar el camino AMB por el que una partícula móvil M, descendiendo por su propio peso, iría de A a B en el menor tiempo posible.
El problema lo propuso Johann sugiriendo que la respuesta correspondía a una curva muy conocida. No se trataba de encontrar puntos donde una curva tiene un máximo o u mínimo, sino que la incógnita buscada es una curva que debe minimizar cierta relación.
La solución era la conocida curva cicloide y fue obtenida de forma distinta por los hermanos Bernoulli. Jakob lo resolvió utilizando un método que sería el inicio del cálculo de variaciones, pero fue la solución de Johann la más genial utilizando de manera combinada la geometría y la física.

Haz click en "más información" para ver el applet.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Sigue la construcción "paso a paso" y con dos deslizadores podrás modificar el ángulo de inclinación de la trayectoria recta y el tamaño de la cicloide. Desactivando la casilla de control podrás ocultar los valores numéricos de velocidad y energías de ambos móviles. El deslizador de tiempo permite observar los valores anteriores para cada posición de los móviles.  Pulsando el botón de "play" se activa la animación.

Veamos la explicación de Johann:

Si la partícula parte de A en reposo, la velocidad que alcanza en B depende de la diferencia de altura h entre los puntos y no de la trayectoria descrita, según la fórmula: $$v=\sqrt{2gh}$$ El principio de Fermat dice la luz viaja de un punto a otro en el menor tiempo posible. Si atraviesa dos medios distintos se cumple la ley de la refracción: $$\frac{sen \theta_1}{v_1}=\frac{sen \theta_2}{v_2}=k$$
Supongamos un medio óptico formado por finas láminas diferentes:
$$\frac{sen\theta_i}{v_i}=k$$
En nuestro problema se cumple: $$\frac{sen\theta}{\sqrt{2gh}}=k$$ siendo el ángulo el que forma la tangente a la curva con la vertical en cada instante.

Derivando las ecuaciones de la cicloide: $$x=r \alpha-rsen \alpha \wedge y=rcos \alpha-r$$
$$\frac{dx}{d\alpha}=r-rcos\alpha \wedge \frac{dy}{d\alpha}=-rsen\alpha$$
$$tg\theta=\frac{dx}{dy}=\frac{1-cos\alpha}{-sen\alpha}=-tg\frac{\alpha}{2}$$
$$\theta=|\frac{\alpha}{2}|$$
$$v=\sqrt{2gr(1-cos\alpha)}=2\sqrt{gr}sen\frac{\alpha}{2}$$
$$\frac{sen\theta}{v}=\frac{sen\frac{\alpha}{2}}{2sen\frac{\alpha}{2}\sqrt{gr}}=\frac{1}{2\sqrt{gr}}$$
que es una constante y por tanto cumple la ley de Fermat.

Teorema de Pitot

En todo cuadrilátero circunscrito a una circunferencia, la suma de las longitudes de los lados opuestos, es igual a la suma de las longitudes de los otros dos lado opuestos. 

Henry Pitot (1695-1771), fue un ingeniero y físico francés. Fue militar y estudió matemáticas por su cuenta.
Inventó el "tubo de Pitot" que es un instrumento destinado, entre otras aplicaciones a la medición del caudal a través de la cuantificación de la velocidad del flujo y que utilizó para medir el caudal del Sena.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)


Se puede modificar la circunferencia moviendo su centro A y el punto B. Moviendo los  vértices B, C, D, E, se modifican los lados del cuadrilátero. Estos puntos están sobre la circunferencia y no deben traspasar  los vértices contiguos para que no desaparezca el cuadrilátero.

Desintegración radiactiva

El número de átomos que se desintegran en un tiempo dado es directamente proporcional al número de átomos presentes en la muestra. La constante de proporcionalidad es conocida como la constante de desintegración.
$$\frac{dN}{dt}=-\lambda N$$
Separando las variables:
$$\frac{dN}{N}=-\lambda t$$
e integrando:
$$\int_{N_0}^N\frac{dN}{N}=-\int_0^t\lambda t dt$$
se obtiene que el número de átomos en función del tiempo:
$$N=N_0 e^{-\lambda t}$$
Se llama periodo de semidesintegración al tiempo t1/2, para el cual, el número de núcleos iniciales se reduce a la mitad. Cada sustancia radiactiva tiene un periodo de semidesintegración. Por tanto, si:
$$N=N_0/2$$
$$t_{1/2}=\frac{ln2}{\lambda}$$
La vida media es el valor medio de duración de los átomos de una sustancia radiactiva:
$$\tau=\frac{1}{\lambda}=\frac{t_{1/2}}{0,693}$$
La velocidad de desintegración o actividad radiactiva, es la tasa de variación del número de núcleos radiactivos por unidad de tiempo:
$$A(t)=-\frac{dN(t)}{dt}$$
es directamente proporcional al número de átomos presentes en la muestra:
$$A(t)=-(-\lambda N_0)e^{-\lambda t}=A_0e^{-\lambda t}=\lambda N(t)$$

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:

  • Se puede modificar el PERÍODO, el PESO ATÓMICO y la MASA INICIAL en gramos.
  • Se puede representar la gráfica hasta un tiempo determinado y recorrerla mediante un punto que corresponde a un instante concreto y observar el número de átomos, la actividad y los gramos.
  • Se muestran los átomos, la actividad y los gramos en una tabla.
  • Se muestran también, la constante de desintegracción y la vida media.
  • Al avanzar en el tiempo las partículas se desintegran desapareciendo de pantalla.
  • El botón INICIAR genera y distribuye aletoriamente en el cuadrado las diferentes partículas.
Descargar .XLS