Nadal VS Federer

Supongamos que un jugador de tenis (Rafa Nadal) tiene una probabilidad p de ganar un point a su contrincante (Roger Federer). La probabilidad de que pierda será q, siendo p+q=1. ¿Qué probabilidad tendrá de ganar un game? ¿Y un set? ¿Y un match?

En una serie de tablas se muestran las posibles evoluciones de un game, un tie-break, un set con tie-break, un set sin tie-break y un match.
Las celdas con números en rojo corresponden a momentos de ventaja de Nadal, las celdas con números en azul indican situaciones de ventaja de Federer y las que tienen los números en negro indican situaciones de empate. Las celdas con los números en negrita indican situación de ganador de alguno de ellos.

Probabilidad de ganar un game:

Los números de la tabla recogen las distintas posibilidades de alcanzar un tanteo concreto. La celda con el 2 corresponde al tanteo 15-15 e indica que se puede alcanzar ese resultado de dos formas distintas: 15-0 ->15-15 o bien 0-15 -> 15-15. Se observa que cada celda es la suma de la celda de su izquierda y de su celda superior (siempre que existan ambas). Sabemos que en tenis se han de conseguir dos puntos de diferencia para adjudicarse el juego y conseguir al menos cuatro points.
De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un point:
$$p(game)=p^4+4p^4q+10p^4q^2+^20p^5q^3+40p^6q^3+80p^7q^3+\cdots$$
$$p(game)=p^4+4p^4q+10p^4q^2(1+2pq+4p^2q^2+8p^3q^3+\cdots)$$
$$p(game)=p^4+4p^4q+\frac{10p^4q^2}{1-2pq}$$

Probabilidad de ganar un tie-break:

Un tie-break es una forma de terminar un game de manera más rápida. Si se llega a un empate a 6 games, se juega un último game de desempate que se consigue con 7 points con diferencia de dos. En caso contrario se siguen jugando points hasta conseguir esa diferencia.

De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un point:
$$p(tie-break)=p^7+7p^7q+28p^7q^2+84p^7q^3+210p^7q^4+\frac{462p^7q^5}{1-2pq}$$
Probabilidad de ganar un set sin tie-break:

Un set se consigue con 6 games y una diferencia de dos. En caso de no conseguir esa diferencia con 6 games, se debe continuar hasta conseguirla.
De acuerdo con la tabla y teniendo en cuenta la probabilidad de conseguir un game:
$$p(set)=p^6+6p^6q+21p^6q^2+56p^6q^3+\frac{126p^6q^4}{1-2pq}$$
Probabilidad de ganar un set con  tie-break:


Un set se consigue con 6 games y una diferencia de dos. En caso de llegar a empate a 6 games se juega un tie-break.

De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un game y un  tie-break:
$$p(set)=p^6+6p^q+21p^6q^2+56p^6q^3+126p^6q^4+252p^7q^5+504p^6q^6P$$
 siendo P la probabilidad de tie-break.

Probabilidad de ganar un match:

Un match se consigue ganando 3 setsEn caso de empate a 2 sets el último se juega con tie-breakHay competiciones en que es suficiente ganar 2 sets y el set de desempate también es con tie-break.
De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un set:
$$p(match)=p^3+3p^3q+6p^2q^2P$$
siendo P la probabilidad de set con tie-break.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir la probabilidad de ganar un point.
  • Se obtienen las probabilidades de ganar un game, un set sin tie-break, un tie-break, un set con tie-break y un match.
  • Las gráficas representan las probabilidades anteriores en función de la probabilidad de ganar un point

Descargar .XLS
  • Basado en el capítulo El tenista ebrio del libro Ingeniosos encuentros entre juegos y matemática de Ian Stewart.

El aparato de Galton

El aparato de Galton es un mecanismo en el que una bola choca con un tope y se desplaza a izquierda o derecha, choca nuevamente y se desplaza de nuevo a izquierda o derecha y así sucesivamente hasta caer en un casillero final.

Para determinar el número esperado de bolas que caen en cada casillero, se puede considerar que al chocar cada bola se duplica, y una se va por la izquierda y otra por la derecha. Se obtienen así los números del triángulo de Pascal.

En cada nivel se obtienen los números combinatorios:
$$\left( \begin{array}{c} n\\ k \end{array} \right),k=0,1,...n$$

Si consideramos que p es la probabilidad de ir a la derecha (éxito) y q=1-p la de ir a la izquierda (fracaso), la probabilidad esperada en cada casillero es:
$$P(k)=\left( \begin{array}{c} n\\ k \end{array} \right) p^kq^{n-k}$$ que sería la probabilidad de k éxitos en un aparato de Galton de n niveles.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:


  • Se puede modificar la probabilidad de éxito (p) y pulsando lanzar se realiza un lanzamiento y pulsando series se ejecutan 100 lanzamientos seguidos.
  • Se muestra el número de lanzamientos efectuados, el movimiento aleatorio de las bolas, el gráfico experimental y el gráfico teórico.
Descargar .XLS

La distribución binomial

La distribución binomial es una distribución de probabilidad discreta. Da la probabilidad  de k de éxitos en n pruebas de Bernoulli independientes.

Un ensayo de Bernoulli sólo tiene dos resultados posibles: éxito con una probabilidad p o fracaso con una probabilidad q=1-p.

La función de probabilidad es: $$f(x)=P(X=x)=\left( \begin{array}{c} n\\ x \end{array} \right) p^xq^{n-x}$$ siendo la media y la varianza de la distribución: $$E[X]=np \wedge V[X]=npq$$ Si n=1 se obtiene la media y la varianza de la distribución de Bernoulli.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:

  • Se puede modificar la probabilidad de éxito (p),  el número de pruebas (n) y el número de éxitos (k).
  • Se muestra la media y la desviación típica de la distribución, la probabilidad de k éxitos, la probabilidad acumulada hasta k éxitos y el gráfico de la distribución.
Descargar .XLS

Permutaciones y estrategias

Como abrir una caja fuerte

Un equipo de 5 personas deben abrir una caja fuerte cuya clave consta de 5 dígitos comprendidos entre 0 y 9. Cada persona conoce una de las cifras del código, por ejemplo 3, 7, 6, 5 y 2. Cada persona accede a la caja fuerte en ese orden, sin poder comunicar con los demás.

Los dígitos del teclado se han intercambiado de manera aleatoria y cada persona dispone de 5 intentos para dar con la cifra correcta. A la sexta pulsación el sistema de seguridad bloquea el teclado y ya no se puede abrir la caja fuerte.

Si cada persona escogiera las teclas al azar, la probabilidad de pode abrir la caja fuerte sería:
$$(1/2)^5=3,125 \%$$
¡Podemos multiplicar por algo más de diez la probabilidad de éxito!
  • Comenzar por la tecla marcada con el dígito deseado.
  • Si la cifra que aparece es la correcta, confirmar. Si no, borrar y pulsar la tecla del dígito aparecido.
  • Repetir la operación hasta dar con el número correcto o hasta agotar los intentos.
Supongamos que se ha generado, de manera aleatoria, la siguiente permutación:
 Todas las cifras se obtienen a la 5ª pulsación, por ejemplo para el 3, aparecen sucesivamente 6, 9, 5, 8 y 3.
Esto ocurre porque la permutación tiene dos "ciclos" de 5 elementos, el anterior y el formado por 0, 1, 2, 4, 7.
 En cambio si la permutación aleatora fuera:
habría un ciclo de 9 elementos: 6, 9, 5, 8, 4, 0, 1, 2, 3 y un ciclo de un sólo elemento: 7.
 Por tanto, si el dígito pertenece a un ciclo de más de 5 elementos se pierde.

¿Por qué esta estrategia es la óptima? 

Lógicamente, ninguna permutación puede contener un ciclo de más de 6 elementos. Estas permutaciones, teniendo en cuenta las diferentes ordenaciones que se pueden obtener, para n>5 son:
$$\binom {10} {n}(n-1)!(10-n)!=\frac{10!}{n}$$
Como hay 10! permutaciones de 10 dígitos, la probabilidad de que una de ellas contenga un ciclo de n>5 elementos es 1/n.
Por tanto la probabilidad de abrir la caja fuerte es:
$$1-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}-\frac{1}{9}-\frac{1}{10}\simeq35,4\%$$

Supongamos que 100 prisioneros son llevados a una habitación en la que hay un fichero con 100 cajones, cada uno de los cuales contiene el nombre de cada uno de los reclusos.

Uno por uno, los prisioneros pueden acceder al fichero y abrir hasta un máximo de 50 cajones, para luego dejar todo como estaba. No pueden comunicarse entre si una vez haya empezado el proceso.

Para salir libres, cada recluso deberá encontrar su nombre en alguno de los cajones que abra; si no ocurre, todos serán ejecutados. El carcelero coloca los nombres de manera aleatoria en los cajones para entorpecer el plan de los reclusos.

Este problema es análogo al anterior. Si los reclusos fueran abriendo los cajones al azar, la probabilidad de salvarse sería:
$$(1/2)^{100}$$
Pero si eligen la misma estrategia que en el caso de la caja fuerte, el  número de permutaciones con ciclos con n>50 es:
$$\binom {100} {n}(n-1)!(100-n)!=\frac{100!}{n}$$
Como hay 100! permutaciones de 100 nombres, la probabilidad de que una de ellas contenga un ciclo de n>50 elementos es también 1/n.

Por tanto la probabilidad de salvarse los 100 presos es:
$$1-\frac{1}{51}-\frac{1}{52}...-\frac{1}{100}\simeq31,2\%$$
Si fueran 1000 presos y abrieran hasta 500 cajones, la probabilidad de salvese sería 30,7%.

Se observa que siempre se suman términos consecutivos de la serie armónica. Esta serie es divergente y se puede comparar con la función ln (n), de acuerdo con las expresiones:
$$H_n=\sum_{k=1}^{n}\frac{1}{k}$$ $$\int_1^n\frac{1}{x}dx=ln(n)$$ $$\lim\limits_{n\to\infty}H_n-ln(n)=\gamma\simeq0,58$$ que es la constante de Euler-Mascheroni.

La probabilidad de perder, son sumas de términos de la serie armónica del tipo:
$$\sum_{k=n+1}^{2n}\frac{1}{k}=H_{2n}-H_n$$ $$\lim\limits_{n\to\infty}H_{2n}-\lim\limits_{n\to\infty}H_{n}=ln(2n)+\gamma-ln(n)-\gamma=ln(2)\simeq0,69314718$$
¡Aunque el número de prisoneros crezca infinitamente, siguiendo la misma estrategia, siempre tendrán una probabilidad de salvarse superior al 30%!

Basado en un artículo de Investigación y Ciencia de Gabriel Uzquiano