Un juego ‘burro’ (II)

Como vimos, hay juegos en los que las ganancias disminuyen cuando aumenta la probabilidad de ganar en cada turno. Son los denominados donkey games o 'juegos burro'.

Recordemos el funcionamiento del juego:

Una moneda tiene una probabilidad p de salir cara (C) y una probabilidad 1-p de salir cruz (X). Se realizan series de lanzamientos. En cada turno si sale cara se gana un euro, si sale cruz se pierde un euro y si sale lo mismo que en la tirada anterior se cancela la ganancia o la pérdida. Por ejemplo, en la secuencia XCCC la ganancia será cero. Si p=0.5 el juego es justo y la ganancia media es cero. En cambio si p aumenta el jugador termina perdiendo y si p disminuye el jugador termina ganando.
Supongamos muchos jugadores participando simultáneamente y observamos un turno determinado: Sea N0 el número de jugadores sin ganancia ni pérdida,  N1 con ganancia  N2 con pérdida en un turno determinado.
En el turno siguiente, el número de jugadores sin ganancia ni pérdida será: $$N_0'=pN_1+(1-p)N_2$$ pues sale cara y había cara o sale cruz y había cruz.
El número de jugadores con ganancia será: $$N_1'=pN_0+pN_2$$ pues sale cara y no había nada o sale cara y había cruz.
El número de jugadores con pérdida será:
$$N_2'=(1-p)N_0+(1-p)N_1$$ pues sale cruz y no había nada o sale cruz y había cara.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar la probabilidad de obtener cara y el número de jugadores.
  • En una tabla se muestran el resultado de cada tirada: cara (C) o cruz (X) y la situación antes y después de la tirada: cara (C), cruz (X) o nada (N).
  • El botón 'inicio' permite empezar el juego.
  • Cada vez que se pulsa el botón 'jugar' se realiza una jugada simultánea.
  • El botón 'serie' permite realizar 100 jugadas simultáneas.
  • Un gráfico muestra los valores N0, N1 y N2 teóricos y experimentales y otro gráfico la ganancia media G.M., teórica y experimental.
Descargar .XLS
  • Para completar la información consultar 'Un juego burro (I)'.
  • Basado en un artículo de Juan M. R. Parrondo (Investigación y Ciencia).

Un juego ‘burro’ (I)

Aunque parezca paradójico, hay juegos en los que las ganancias disminuyen cuando aumenta la probabilidad de ganar en cada turno. Se denominan donkey games o 'juegos burro'. Christian van den Broeck y Bart Cleuren, físicos del Centro Universitario de Limburg, en Bélgica, estudian este tipo de juegos.Veamos uno de ellos:

Una moneda tiene una probabilidad p de salir cara (C) y una probabilidad 1-p de salir cruz (X). Se realizan series de lanzamientos. En cada turno si sale cara se gana un euro, si sale cruz se pierde un euro y si sale lo mismo que en la tirada anterior se cancela la ganancia o la pérdida. Por ejemplo, en la secuencia XCCC la ganancia será cero. Si p=0.5 el juego es justo y la ganancia media es cero. En cambio si p aumenta el jugador termina perdiendo y si p disminuye el jugador termina ganando.
Supongamos muchos jugadores participando simultáneamente y observamos un turno determinado: Sea N0 el número de jugadores sin ganancia ni pérdida,  N1 con ganancia  N2 con pérdida en un turno determinado.
En el turno siguiente, el número de jugadores sin ganancia ni pérdida será: $$N_0'=pN_1+(1-p)N_2$$ pues sale cara y había cara o sale cruz y había cruz.
El número de jugadores con ganancia será: $$N_1'=pN_0+pN_2$$ pues sale cara y no había nada o sale cara y había cruz.
El número de jugadores con pérdida será:
$$N_2'=(1-p)N_0+(1-p)N_1$$ pues sale cruz y no había nada o sale cruz y había cara.

 Las soluciones estacionarias se obtienen cuando, después de muchas iteraciones, los nuevos valores coinciden con los anteriores. Resolviendo el sistema:
$$\begin{eqnarray*} N_0 = pN_1+(1-p)N_2 \\ N_1=pN_0+pN_2 \\ N_2=(1-p)N_0+(1-p)N_1 \end{eqnarray*}$$ se obtienen las soluciones: $$N_1=\frac{p(2-p)}{p^2-p+1}N_0 \wedge N_2=\frac{1-p^2}{p^2-p+1}N_0$$ La ganancia en un turno es: $$G=pN_0-(1-p)N_0-N_1+N_2=$$ $$(2p-1)N_0-\frac{p(2-p)}{p^2-p+1}N_0+\frac{1-p^2}{p^2-p+1}N_0=\frac{p(p-1)(2p-1)}{p^2-p+1}N_0$$ El número total de jugadores es: $$N_0+N_1+N_2=N_0+\frac{p(2-p)}{p^2-p+1}N_0+\frac{1-p^2}{p^2-p+1}N_0=$$ $$\frac{-p^2+p+2}{p^2-p+1}N_0=\frac{-(p+1)(p-2)}{p^2-p+1}N_0$$ La ganancia media es: $$\overline{G}=\frac{\frac{p(p-1)(2p-1)}{p^2-p+1}}{\frac{-(p+1)(p-2)}{p^2-p+1}}=\frac{p(1-p)(1-2p)}{(1+p)(2-p)}$$
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar el número de jugadores y la probabilidad de obtener cara.
  • Se puede cambiar el turno del juego y obtener el número de jugadores en cada uno de los casos  y la ganancia media en cada turno.
  • Unos gráficos muestran los posibles valores de la ganancia media,  la evolución de la ganancia media y del número de jugadores en cada caso.
Descargar .XLS
  • Basado en un artículo de Juan M. R. Parrondo (Investigación y Ciencia).

Nadal VS Federer

Supongamos que un jugador de tenis (Rafa Nadal) tiene una probabilidad p de ganar un point a su contrincante (Roger Federer). La probabilidad de que pierda será q, siendo p+q=1. ¿Qué probabilidad tendrá de ganar un game? ¿Y un set? ¿Y un match?

En una serie de tablas se muestran las posibles evoluciones de un game, un tie-break, un set con tie-break, un set sin tie-break y un match.
Las celdas con números en rojo corresponden a momentos de ventaja de Nadal, las celdas con números en azul indican situaciones de ventaja de Federer y las que tienen los números en negro indican situaciones de empate. Las celdas con los números en negrita indican situación de ganador de alguno de ellos.

Probabilidad de ganar un game:

Los números de la tabla recogen las distintas posibilidades de alcanzar un tanteo concreto. La celda con el 2 corresponde al tanteo 15-15 e indica que se puede alcanzar ese resultado de dos formas distintas: 15-0 ->15-15 o bien 0-15 -> 15-15. Se observa que cada celda es la suma de la celda de su izquierda y de su celda superior (siempre que existan ambas). Sabemos que en tenis se han de conseguir dos puntos de diferencia para adjudicarse el juego y conseguir al menos cuatro points.
De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un point:
$$p(game)=p^4+4p^4q+10p^4q^2+^20p^5q^3+40p^6q^3+80p^7q^3+\cdots$$
$$p(game)=p^4+4p^4q+10p^4q^2(1+2pq+4p^2q^2+8p^3q^3+\cdots)$$
$$p(game)=p^4+4p^4q+\frac{10p^4q^2}{1-2pq}$$

Probabilidad de ganar un tie-break:

Un tie-break es una forma de terminar un game de manera más rápida. Si se llega a un empate a 6 games, se juega un último game de desempate que se consigue con 7 points con diferencia de dos. En caso contrario se siguen jugando points hasta conseguir esa diferencia.

De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un point:
$$p(tie-break)=p^7+7p^7q+28p^7q^2+84p^7q^3+210p^7q^4+\frac{462p^7q^5}{1-2pq}$$
Probabilidad de ganar un set sin tie-break:

Un set se consigue con 6 games y una diferencia de dos. En caso de no conseguir esa diferencia con 6 games, se debe continuar hasta conseguirla.
De acuerdo con la tabla y teniendo en cuenta la probabilidad de conseguir un game:
$$p(set)=p^6+6p^6q+21p^6q^2+56p^6q^3+\frac{126p^6q^4}{1-2pq}$$
Probabilidad de ganar un set con  tie-break:


Un set se consigue con 6 games y una diferencia de dos. En caso de llegar a empate a 6 games se juega un tie-break.

De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un game y un  tie-break:
$$p(set)=p^6+6p^q+21p^6q^2+56p^6q^3+126p^6q^4+252p^7q^5+504p^6q^6P$$
 siendo P la probabilidad de tie-break.

Probabilidad de ganar un match:

Un match se consigue ganando 3 setsEn caso de empate a 2 sets el último se juega con tie-breakHay competiciones en que es suficiente ganar 2 sets y el set de desempate también es con tie-break.
De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un set:
$$p(match)=p^3+3p^3q+6p^2q^2P$$
siendo P la probabilidad de set con tie-break.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir la probabilidad de ganar un point.
  • Se obtienen las probabilidades de ganar un game, un set sin tie-break, un tie-break, un set con tie-break y un match.
  • Las gráficas representan las probabilidades anteriores en función de la probabilidad de ganar un point

Descargar .XLS
  • Basado en el capítulo El tenista ebrio del libro Ingeniosos encuentros entre juegos y matemática de Ian Stewart.

Juego de ruleta: La Boule

Este juego fue inventado en el siglo XVIII en Francia como una variante del denominado La Hoca. Consiste en una versión reducida de la ruleta tradicional.

Consta de 18 casiilas numeradas del 1 al 9 en dos series, una superior y otra inferior. Los jugadores pueden apostar de manera múltiple: negro (rojo), impar (par), falta (pasa), superior (inferior) o individual a un número cualquiera. El 5 actúa como el 0 de la ruleta tradicional, pero se admite como apuesta individual.


La esperanza de ganancia para el apostante es de -11.11%, y por tanto, muy ventajosa para la banca lo que hace que cada vez sea menos frecuente su presencia en los casinos, salvo en algunos  de Francia.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • INICIAR PARTIDA: Permite elegir el número de partidas y cuánto dinero se va a apostar.
  • APOSTAR: Se puede elegir el dinero para cada una de las apuestas a en las celdas grises.
  • JUGAR: Pone en marcha la ruleta y va mostrando el premio en tiempo real.
  • COBRAR: Vacía la celda premio (si hay ganancia) y modifiica la celda saldo (si hay pérdida).
Descargar .XLS