Movimiento armónico amortiguado

La hipótesis de que el rozamiento no tenga influencia en el movimiento armónico de un punto unido a un muelle o de un péndulo raramente se produce en la práctica. La experiencia enseña que el medio en el que oscila el punto se opone a dichas oscilaciones con una fuerza llamada resistencia viscosa, que en la mayoría de los casos es proporcional a la velocidad del punto, siendo b el coeficiente de rozamiento del medio.
$$R=-bv$$

Por tanto la ley de Newton aplicada a un punto de masa m unido a un muelle de elasticidad k será sobre el eje x:
$$-kx-bx'=mx'$$
$$x'+\frac{b}{m}x'+\frac{k}{m}=0$$
Esta ecuación diferencial tiene como solución:
$$x=Ae^{- \frac{b}{2m}}cos(\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}t+\phi)$$
El coeficiente de amortiguamiento es:
$$\alpha=\frac{b}{2m}$$
La pulsación o frecuencia angular es:
$$\omega=\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}$$
Se define el factor de calidad:
$$Q=\sqrt{\frac{km}{b}}$$
y es igual a $$2·\pi$$ veces el inverso de las pérdidas de energía por período. Si b=0, entonces se obtiene el movimiento armónico clásico.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir el valor de la elasticidad, la masa, la amplitud inicial, el desfase y el coeficiente de rozamiento.
  • Se obtienen la pulsación,el coeficiente de amortiguamiento y el factor de calidad.
  • Las gráficas representan la posición y la velocidad, las energías cinética y potencial y el espacio de fases v-x a lo largo del tiempo.
  • Al modificar el instante de tiempo se muestran los valores de la posición, velocidad, energía cinética, energía potencial y energía total.
Descargar .XLS

Trigonometría del cuadrado

El círculo no es el único sistema para desarrolla una trigonometría. Sustituyendo el círculo unitario por un cuadrado de lado unidad se obtiene la trigonometría del cuadrado.

Al recorrer un punto P(x,y) los lados del cuadrado se definen las siguientes C funciones trigonométricas:
$$Csen \alpha=x+y$$ $$Ccos\alpha=x-y$$ $$Ctg \alpha=Csen \alpha \cdot Ccos \alpha=x^2-y^2$$ Por métodos algebraicos y utilizando la simetría se pueden obtener las tablas del seno, coseno y tangente de los ángulos más representativos (30º, 45,º 60º, 90º,...360º) y así construir las gráficas de las funciones correspondientes.


> Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Al mover el punto A a lo largo del cuadrado se obtienen los puntos de las funciones seleccionadas y por tanto las gráficas correspondientes. Esto permite estudiar las propiedades de esas funciones y compararlas con las de la trigonometría clásica.
Se pueden visualizar o no las trazas de las funciones correspondientes utilizando las casillas de control. Se borran las trazas con ctrl+F.
  • Basado en un trabajo realizado por estudiantes del Instituto Pedagógico Nacional de Bogotá.

La media derivada

¿Existe un operador, que se comporte como una media derivada?
$$H^2f(x)=Df(x)$$
Existe y estaría representado por:
$$Hf(x)=D^\frac{1}{2}f(x)$$
Más aún,  para todo a>0 real, se puede conseguir un operador:
$$D^af(x)$$ que recibe el nombre de derivada fraccional.

Si tomamos la función potencial: $$f(x)=x^k$$
su derivada a-ésima es:
$$D^ax^k=\frac{k!}{(k-a)!}x^{k-a}$$
Teniendo en cuenta la función gamma:
$$\Gamma(z+1)=\int_0^\infty t^ze^{-t}\,\mathrm{d}z$$
que verifica para números reales positivos:
$$\Gamma(z+1)=z!$$
la derivada a-ésima se expresa como:
$$D^ax^k=\frac{\Gamma(k+1)}{\Gamma(k+1-a)}x^{k-a}$$
Aplicamos la media derivada una primera vez a la función potencial de 2º grado:
$$D^\frac{1}{2}x^2=\frac{\Gamma(3)}{\Gamma(5/2)}x^{3/2}$$
Aplicamos de nuevo la media derivada a la función obtenida: $$\frac{\Gamma(3)}{\Gamma(5/2)}D^\frac{1}{2}x^{3/2}=\frac{\Gamma(3)}{\Gamma(5/2)}\frac{\Gamma(5/2)}{\Gamma(2)}x=2x$$
y observamos que hacer dos medias derivadas equivale a una derivada.

Si es necesario calcular la función gamma para un número fraccionario, se usa la fórmula de duplicación:
$$\Gamma(z)·\Gamma(z+1)=z^{1-2z}·\sqrt {\pi}·\Gamma(2z)$$
Si la derivada n-ésima de la función seno es:
$$D^nsen x=sen(x+n\frac{\pi}{2})$$
podemos extender la derivación para cualquier número real a>0:
$$D^asen x=sen(x+a\frac{\pi}{2})$$

> Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Con el deslizador a podrás elegir la 1ª derivada fraccional y con el deslizador b elegir una 2ª derivación fraccional. Podrás observar que si a+b es un número natural, se obtiene una derivada "tradicional".

El Cálculo Fraccional trata del estudio de los llamados operadores de derivación e integración de orden fraccionario sobre dominios reales o complejos y sus aplicaciones. En realidad dichos operadores surgen con el objetivo de generalizar los conceptos de integración y de derivada para valores no enteros.
El origen del Cálculo Fraccional se remonta a 1675, momento en el que Leibniz introduce la noción de la derivada de orden n de una función. Fue posteriormente en 1695 cuando los primeros resultados publicados son citados en una carta de L'Hôpital a Leibniz, en la cual L'Hôpital plantea la cuestión del posible significado de la derivada de orden n si n=1/2. La respuesta intuitiva en ese momento de Leibniz fue: "...y esto es una paradoja aparente que permitirá en el futuro extraer consecuencias muy útiles".

A partir de aquí, son muchos los matemáticos que han estudiado este tema y han aportado su contribución al desarrollo de lo que hoy conocemos sobre Cálculo Fraccionario. Entre ellos podemos destacar a Euler, Lagrange,Fourier, Abel, Liouville, Riemann, Grünwald, Letnikov, Holmgren, Cauchy, Hadamard, Hardy, Riesz, Weyl, etc.

Sus aplicaciones van desde el control y la robótica hasta el estudio de los polímeros o las ondas sísmicas.

La cicloide (III)

La cicloide tiene la propiedad de ser tautócrona:

Si desde dos puntos, a diferentes alturas de una cicloide invertida, dejamos caer dos bolas, éstas llegan a la vez a la parte más baja a pesar de hacer recorridos diferentes.

Christiann Huygens fue el primero en descubrir esa propiedad y aplicarlo a los relojes de péndulo. Aunque se variase la amplitud del péndulo, el período de tiempo siempre sería el mismo si el recorrido de la lenteja del péndulo fuera el de una cicloide.

Situando el péndulo entre dos topes formados por medias cicloides se consigue el objetivo.

Haz click en "más información" para ver el applet.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Con el deslizador puedes modificar el tiempo y observar la posición de las dos bolas. Pulsando el botón de "play" se activa la animación.

Las ecuaciones de la cicloide invertida son:
$$x=r\alpha-rsen\alpha \wedge y=rcos\alpha-r$$
La velocidad de caída de una bola desde un punto de la curva a otro inferior es:
$$v_\alpha=\sqrt{2gh}$$$$h=y_\beta-y_\alpha=rcos\beta-rsen\alpha$$$$cos\beta=2cos^2\frac{\beta}{2}-1$$ $$v_\alpha=2\sqrt{gr}\sqrt{cos^2\frac{\beta}{2}-cos^2\frac{\alpha}{2}}$$$$ds=\sqrt{(\frac{dx}{d\alpha})^2+(\frac{dy}{d\alpha})^2}d\alpha=2rsen\frac{\alpha}{2}d\alpha$$$$dt=\frac{ds}{v}=\frac{2rsen\frac{\alpha}{2}}{2\sqrt{gr}\sqrt{cos^2\frac{\beta}{2}-cos^2\frac{\alpha}{2}}}$$ $$t=\sqrt{\frac{r}{g}}\int_\beta^{\pi}\frac{sen\frac{\alpha}{2}}{\sqrt{cos^2\frac{\beta}{2}-cos^2\frac{\alpha}{2}}}\,\mathrm{d}\alpha=$$ $$2\sqrt{\frac{r}{g}}\int_0^{cos\frac{\beta}{2}}\frac{1}{\sqrt{cos^2\frac{\beta}{2}-u^2}}\,\mathrm{d}u=$$ $$2\sqrt{\frac{r}{g}}\int_0^1\frac{1}{\sqrt{1-x^2}}\,\mathrm{d}x=\frac{\pi}{2}\sqrt{\frac{r}{g}}$$

Por tanto, el tiempo recorrido es independiente del punto de partida. Es una constante que depende del parámetro r de la cicloide.

La cicloide (II)

El problema de la Braquistócrona fue el motivo de una amarga contienda entre los hermanos Johann y Jakob Bernoulli.
Dados dos puntos A y B en un plano vertical, hallar el camino AMB por el que una partícula móvil M, descendiendo por su propio peso, iría de A a B en el menor tiempo posible.
El problema lo propuso Johann sugiriendo que la respuesta correspondía a una curva muy conocida. No se trataba de encontrar puntos donde una curva tiene un máximo o u mínimo, sino que la incógnita buscada es una curva que debe minimizar cierta relación.
La solución era la conocida curva cicloide y fue obtenida de forma distinta por los hermanos Bernoulli. Jakob lo resolvió utilizando un método que sería el inicio del cálculo de variaciones, pero fue la solución de Johann la más genial utilizando de manera combinada la geometría y la física.

Haz click en "más información" para ver el applet.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Sigue la construcción "paso a paso" y con dos deslizadores podrás modificar el ángulo de inclinación de la trayectoria recta y el tamaño de la cicloide. Desactivando la casilla de control podrás ocultar los valores numéricos de velocidad y energías de ambos móviles. El deslizador de tiempo permite observar los valores anteriores para cada posición de los móviles.  Pulsando el botón de "play" se activa la animación.

Veamos la explicación de Johann:

Si la partícula parte de A en reposo, la velocidad que alcanza en B depende de la diferencia de altura h entre los puntos y no de la trayectoria descrita, según la fórmula: $$v=\sqrt{2gh}$$ El principio de Fermat dice la luz viaja de un punto a otro en el menor tiempo posible. Si atraviesa dos medios distintos se cumple la ley de la refracción: $$\frac{sen \theta_1}{v_1}=\frac{sen \theta_2}{v_2}=k$$
Supongamos un medio óptico formado por finas láminas diferentes:
$$\frac{sen\theta_i}{v_i}=k$$
En nuestro problema se cumple: $$\frac{sen\theta}{\sqrt{2gh}}=k$$ siendo el ángulo el que forma la tangente a la curva con la vertical en cada instante.

Derivando las ecuaciones de la cicloide: $$x=r \alpha-rsen \alpha \wedge y=rcos \alpha-r$$
$$\frac{dx}{d\alpha}=r-rcos\alpha \wedge \frac{dy}{d\alpha}=-rsen\alpha$$
$$tg\theta=\frac{dx}{dy}=\frac{1-cos\alpha}{-sen\alpha}=-tg\frac{\alpha}{2}$$
$$\theta=|\frac{\alpha}{2}|$$
$$v=\sqrt{2gr(1-cos\alpha)}=2\sqrt{gr}sen\frac{\alpha}{2}$$
$$\frac{sen\theta}{v}=\frac{sen\frac{\alpha}{2}}{2sen\frac{\alpha}{2}\sqrt{gr}}=\frac{1}{2\sqrt{gr}}$$
que es una constante y por tanto cumple la ley de Fermat.

Trigonometría: ángulos complementarios

Los ángulos suplementarios son los que suman 90º y cumplen las siguientes relaciones:
$$sen(\pi/2-\alpha)=cos(\alpha)$$ $$cos(\pi/2-\alpha)=sen(\alpha)$$ $$tg(\pi/2-\alpha)=ctg(\alpha)$$

Haz click en "más información" para ver el applet.


> Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Sigue la construcción "paso a paso" y desplazando el punto P sobre la circunferencia obtendrás difrentes ángulos complementarios y los valores del seno, coseno y tangente y sus respectivas líneas trigonométricas.

Trigonometría: ángulos suplementarios

Los ángulos suplementarios son los que suman 180º y cumplen las siguientes relaciones:
$$sen(\pi-\alpha)=sen(\alpha)$$ $$cos(\pi-\alpha)=-cos(\alpha)$$
$$tg(\pi-\alpha)=-tg(\alpha)$$

Haz click en "más información" para ver el applet.


> Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Sigue la construcción "paso a paso" y desplazando el punto P sobre la circunferencia obtendrás difrentes ángulos suplementarios y los valores del seno, coseno y tangente y sus respectivas líneas trigonométricas.