Movimiento armónico amortiguado

La hipótesis de que el rozamiento no tenga influencia en el movimiento armónico de un punto unido a un muelle o de un péndulo raramente se produce en la práctica. La experiencia enseña que el medio en el que oscila el punto se opone a dichas oscilaciones con una fuerza llamada resistencia viscosa, que en la mayoría de los casos es proporcional a la velocidad del punto, siendo b el coeficiente de rozamiento del medio.
$$R=-bv$$

Por tanto la ley de Newton aplicada a un punto de masa m unido a un muelle de elasticidad k será sobre el eje x:
$$-kx-bx'=mx'$$
$$x'+\frac{b}{m}x'+\frac{k}{m}=0$$
Esta ecuación diferencial tiene como solución:
$$x=Ae^{- \frac{b}{2m}}cos(\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}t+\phi)$$
El coeficiente de amortiguamiento es:
$$\alpha=\frac{b}{2m}$$
La pulsación o frecuencia angular es:
$$\omega=\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}$$
Se define el factor de calidad:
$$Q=\sqrt{\frac{km}{b}}$$
y es igual a $$2·\pi$$ veces el inverso de las pérdidas de energía por período. Si b=0, entonces se obtiene el movimiento armónico clásico.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir el valor de la elasticidad, la masa, la amplitud inicial, el desfase y el coeficiente de rozamiento.
  • Se obtienen la pulsación,el coeficiente de amortiguamiento y el factor de calidad.
  • Las gráficas representan la posición y la velocidad, las energías cinética y potencial y el espacio de fases v-x a lo largo del tiempo.
  • Al modificar el instante de tiempo se muestran los valores de la posición, velocidad, energía cinética, energía potencial y energía total.
Descargar .XLS