Teorema de Viviani

En un triángulo equilátero la suma de las tres distancias de un punto interior a los lados del triángulo es una indepenediente de la posición del punto y que coincide con la altura del tríángulo.

Demostración:

El triangulo equilátero ABC se puede descomponer en los triángulos: ADB, BDC y ADC siendo D el punto interior. Si el lado del triángulo es l, la altura h y las distancias de D a los lados d1, d2 y d3, se cumple: $$\frac{l \cdot h}{2}=\frac{l \cdot d_1}{2}+\frac{l \cdot d_2}{2}+\frac{l \cdot d_3}{2}$$ $$h=d_1+d_2+d_3$$ El teorema es generalizable a polígonos regulares.

Sigue la construcción "paso a paso" y desplazando los vertices A y B del triángulo puedes cambiar su tamaño y orientación. Al mover el punto D interior al triángulo se comprueba el teorema de Viviani.

Teorema de Kurschak

Determina el área de un dodecaedro regular a partir de los puntos medios de los lados de un cuadrado. Se debe al matemático húngaro Jozsef Kurschak (1864-1933).
Sobre cada uno de los lados de un cuadrado se construyen 4 triángulos equiláteros interiores.Las 8 intersecciones de los lados de esos triángulos y los 4 puntos medios de los lados del nuevo cuadrado formado por los vértices libres de los triángulos, son los vértices de un dodecaedro regular y pasan por la circunferencia inscrita al cuadrado inicial.
En la construcción se observan dos tipos de pequeños triángulos, unos son equiláteros (E) y otros son isósceles (I).
Se observa que el área del cuadrado está formada por 16 triángulos E y 32 triángulos I. $$A_c=16\cdot E +32\cdot I$$ Por otra parte el área del dodecaedro está formada por 12 triángulos E y 24 triángulos I. $$A_d=12\cdot E +24 \cdot I$$ Por tanto: $$A_d=\frac{3}{4}A_c$$ Si la circunferencia inscrita al cuadrado inicial es unitaria (radio unidad) su área vale pi, el área del cuadrado vale 4 y por tanto el área del dodecaedro vale 3.

Se puede modificar el cuadrado desplazando sus vértices inferiores. Con las flechas se puede observar la construcción "paso a paso".