Teorema de Miquel (I)

El matemático francés Auguste Miquel enunció en 1838 el siguiente teorema geométrico: Sea un triángulo cualquiera ABC. Sobre sus lados se sitúan los puntos D, E y F que se pueden desplazar a lo largo de los lados CB, AC y AB respectivamente. Se trazan las circunferencias: $$ AEF, BDF, CDE$$ que pasan por un vértice y los puntos móviles adyacentes. Entonces las tres circunferencia se cortan en un punto común M, llamado punto de Miquel.
Además si se trazan los segmentos: $$MD, ME, MF$$ que unen el punto de Miquel con los puntos móviles, se observa que los ángulos: $$\widehat{AFM}=\widehat{BDM}=\widehat{CEM}$$

Se puede modificar el triángulo desplazando sus vértices A, B y C. Tambíen mover los puntos D, E y F situados sobre los lados y así comprobar el teorema. Con las flechas se puede observar la construcción "paso a paso".

La tiranía de la mayoría

Alexis de Tocqueville (1805-1859), fue un pensador, jurista, político e historiador francés, precursor de la sociología clásica y uno de los más importantes ideólogos del liberalismo. En su obra Democracia en América, anunciaba potenciales amenazas para la joven república norteamericana. Lo esencial en democracia es que la minoría (sea pequeña o casi la mitad del electorado) tenga siempre voz, sea escuchada y respetada, como también en algún momento intervenga en los actos de gobierno. El respeto a disentir sigue siendo lo fundamental, lo definitorio del proceso democrático.

A continuación se muestra una situación en que se analiza la presencia o no de la Tiranía de la Mayoría al aplicar el método de votación de la media. Supongamos que los extranjeros residentes en una ciudad necesitan tener asistencia sanitaria. Para ellos es una necesidad básica, pero para el resto de la población supone más impuestos. Los deseos de la Minoría entran en conflicto con la Mayoría. De acuerdo con estos criterios, en un votación la Minoría puntúa con 9 la asistencia sanitaria y con 0 no tener la prestación. En cambio el resto de la población valora con un 4 la asistencia y con un 5 lo contrario.

Distinguimos entre el SI o el NO a la asistencia sanitaria y se calculan las puntuaciones medias de las dos opciones cuando la Minoría es del 10%:
\begin{equation*}\label{lan} \overline{x}(NO)=\frac{10 \cdot 0+ 90\cdot 5}{100}=4.5 \ \wedge \ \overline{x}(SI)=\frac{10 \cdot 9+ 90\cdot 4}{100}=4.5 \end{equation*}
Se observa que coinciden y por tanto cuando la Minoría supere el 10% de la población conseguirá ganar la votación.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar las valoraciones de la minoría y de la mayoría.
  • Se puede modificar el porcentaje que representa la minoría.
  • Se puede observar cuando gana la mayoría o la minoría.
Descargar .XLS

La media aritmética y otras medias (II)

El matemático alemán Otto Hölder propuso una definición generalizada de la media. Esta media depende de un parámetro que para determinados valores dan lugar a las medias conocidas. $$\overline x (k)=\left (\frac{1}{n}\sum_{i=1}^{n}{x_i^k} \right )^{1/k} \rightarrow \overline x (k)=\left [\frac{1}{2}(a^k+b^k) \right ]^{1/k}$$ Se muestra la fórmula para n valores y la que se va a utilizar para dos valores a y b.
  • ARITMÉTICA: $$k=1 \rightarrow A=\frac{a+b}{2}$$
  • CUADRÁTICA: $$k=2 \rightarrow Q=\sqrt{\frac{a^2+b^2}{2}}$$
  • ARMÓNICA: $$k=-1 \rightarrow H=\frac{2}{\frac{1}{a}+\frac{1}{b}}$$
  • GEOMÉTRICA: $$k \rightarrow 0 \rightarrow G=\sqrt{ab}$$
Veamos la obtención de la última media: $$\lim_{k \to 0}\left [\frac{1}{2} (a^k+b^k) \right ]^{1/k}=1^\infty$$ Recordando que si: $$\lim_{x \to a}f(x)^{g(x)}=1^\infty$$ se puede hacer el cambio: $$f(x)=1+h(x) \wedge \lim_{x \to a}h(x)=0$$ $$ \lim_{x \to a}f(x)^{g(x)}= \lim_{x \to a}\left [ 1+h(x)\right ]^{\frac{1}{h(x)}h(x)g(x)}=$$ $$\lim_{x \to a}e^{h(x)g(x)}=\lim_{x \to a}e^{(f(x)-1)g(x)}$$ Aplicando el algoritmo a nuestro caso: $$\lim_{k \to 0}\left [ \frac{1}{2}(a^k+b^k) -1\right ]\frac{1}{k}=\frac{0}{0}$$ y aplicando la regla de l'Hôpital: $$\lim_{k \to 0}\frac{1}{2}\frac{(a^kLa+b^kLb)}{1}=\frac{1}{2}(La+Lb)=L(ab)^{1/2}$$ Por tanto, el límite es: $$e^{L(ab)^{1/2}}=(ab)^{1/2}=\sqrt{ab}$$
Desplazando el segmento FG=d entre las dos bases del trapecio isósceles se consiguen las diferentes medias:

  • ARITMÉTICA: Cuando F y G son los puntos medios de los lados no paralelos.
  • CUADRÁTICA: Cuando los dos trapecios ABGF y CDGF que determina el segmento tienen la misma área.
  • ARMÓNICA: Cuando el segmento pasa por el punto de corte de las diagonales.
  • GEOMÉTRICA: Cuando d es media proporcional de las bases a y b.
Se puede modificar el trapecio y desplazar el segmento FG para comprobar las medias. Con las flechas se puede observar la construcción "paso a paso".